

ISSN 1686-0209

Thai Journal of Mathematics Vol. 18, No. 1 (2020), Pages 113 - 125

SOME FIXED POINT RESULTS ON *M*_b-METRIC SPACES VIA SIMULATION FUNCTIONS

Benjawan Rodjanadid 1,* and Jessada Tanthanuch 2

¹ School of Mathematics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand, e-mail : benjawan@sut.ac.th ² School of Mathematics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand, e-mail : jessada@g.sut.ac.th

Abstract In this research, theorems related with the fixed point were extended to be considered on M_b -metric spaces. The concept of an extension was based on the simulation functions introduced by Khojasteh et al. [10] and some results of MLAIKI et al. [13]. This article provides contents of the fixed point theory developed by many mathematicians, and our discovered result, the uniqueness theorem of a fixed point in complete M_b -metric space.

MSC: 47H10; 47H09; 54E25 **Keywords:** Fixed point; M_b -metric space; simulation function; \mathcal{Z}_{m_b} -contraction

Submission date: 29.10.2019 / Acceptance date: 21.12.2019

1. INTRODUCTION AND PRELIMINARIES

The existence of the fixed point theorem in Banach space was first investigated by Banach himself who established the well known Banach contraction principle in 1922 [6]. Applications of the discovery play a major role in the existence theory of differential, integral, partial differential and functional equations [11]. This theorem is a principle tool for providing the existence of solutions in games theory, mathematical economic and some biological models [3, 11]. Ever since the idea of the fixed point theorem was proposed, many mathematicians have developed and extended a number of theories related to it.

In 1989, Bakhtin[5] (see also Czerwik [7]) introduced the concept of a *b*-metric space and proved some fixed point theorems for some contraction mapping in *b*-metric spaces. This apprehension generalizes Banach's contraction principle in metric space. After that Matthews[12] introduced the notion of a partial metric space and prolonged the contraction principle of Banach in that new framework in 1994. Shukla[20] combined both concepts of *b*-metric and partial metric spaces and proposed the partial *b*-metric space in 2014. The Kannan type fixed point theorem in partial *b*-metric spaces, which is an analog of Banach contraction principle, was also suggested as well.

In 2014, Asadi et al.[2] introduced M-metric space, which extends the partial metric space and certain fixed point theorems obtained therein. In the later year, Khojasteh et

^{*}Corresponding author.