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Abstract.  Equation ( )( , ) ( , ) ( , ) ( , ), ( , )
u u
x t u x t x t G u x t u x t

t x
τ

∂ ∂
+ = −

∂ ∂
 is a delay partial differential

equation with an arbitrary functional G . This delay partial differential equation is more general than

( )( , ) ( , ) ( , ) ( , )
u u
x t u x t x t G u x t

t x
τ

∂ ∂
+ = −

∂ ∂
 which has been applied group analysis to find representations

of analytical solutions [3]. Application of group analysis to the equation and group classification of representations
of solutions where ( )( , ) ( , ) ( )G g u x t u x t H uτ= − − + , g  and H are arbitrary functions, are presented in

the article.

1 Introduction

Consider delay partial differential equation (DPDE) with delay 0τ >
(1.1) ( )( , ) ( , ) ( , ) ( , ), ( , )

u u
x t u x t x t G u x t u x t

t x
τ

∂ ∂
+ = −

∂ ∂
For the simplicity, notation u τ will be used to denote ( , )u x t τ− , u  denotes ( , )u x t  and xu , tu  mean first
partial derivatives of u  with respect to x  and t , respectively. Equation (1.1) can be simply written as
(1.2) ( ),t xu uu G u uτ+ = .
Equation (1.2) is similar to Hopf or inviscid Burgers' equation [1]. However, equation (1.2) has a delay term,
which makes the equation difficult to be solved [2]. Applications of delay differential equations can be found in
[2,3,4,5,6]. The representations of solutions for the particular case of equation (1.2),
(1.3) ( )t xu uu G u τ+ = .
has been found [3]. These solutions were obtained by applying group analysis method [7,8,9] to the equation.
Group analysis also classifies equation (1.3) w.r.t. symmetries into two cases, arbitrary functional G  and
G ku τ=  :
- For arbitrary functional ( )G u τ

The solution is 
1 2 1( )u f C x C t= − , where 

1f  is an arbitrary function, 
1 2,C C are arbitrary constants. The

solution reduces equation (1.3) into a functional ordinary differential equation (FODE) ( )1 1
1

2 1 1

( )
'( )

( )

G f C
f

C f C

θ τ
θ

θ
+

=
−

,

where 
2 1C x C tθ = − .

- For particular functional ( )G u kuτ τ= , where k is an arbitrary constant.
For this case, equation (1.3) has two possible forms of representation of solutions, i.e.
     1. 

3 2( ) ( )u x C f t= + , where 
2f  is an arbitrary function, 

3C  is an arbitrary constant.
This solution reduces the equation into delay ordinary differential equation (DODE) [ ]22 2 2'( ) ( ) ( )f kf t f tθ τ= − − .
     2. ( )5 5

3 4( )C t C tu e f x C e−= + , where 
2f  is an arbitrary function, 

4 5,C C are arbitrary constants.

By this solution, equation (1.3) can be simplified to FODE ( ) ( )
( )

5
5 3 3

3
3 5

'( )
CC f kf e

f
f C

τφ φ
θ

φ φ

−
=

−
, where

5
4( ) C tx C eφ −= + .

In this article, group analysis is applied to find symmetries of equation (1.2) which is more general
than (1.3). However, for the sake of simplicity, equation (1.2) is considered for the case

( )( , ) ( , ) ( )G g u x t u x t H uτ= − − +  only, where g  and H are arbitrary functions. Classification of the
equation with respect to groups of symmetries admitted by the equation are presented in the following sections.



2 Applications of group analysis to delay differential equations

By the theory of group analysis, a symmetry of equation (1.2) is defined as the transformation :ϕ Ω×Δ → Ω
which transforms a solution of the differential equation to a solution of the same equation, where Ω  is a set of
variables ( , , )x t u  and Δ ⊂ R  is a symmetric interval with respect to zero. Variable ε  is considered as a
parameter of transformation ϕ ,  which transforms variable ( , , )x t u  to new variable ( , , )x t u  of the same space.
Let ( , , ; )x t uϕ ε  be denoted by ( , , )x t uεϕ . The set of functions 

εϕ  forms a one-parameter transformation group
of space Ω  if the following properties hold [7,8,9]:

(1) 
0( , , ) ( , , )x t u x t uϕ =  for any ( , , )x t u ∈ Ω ;

(2) ( )
1 2 1 2

( , , ) ( , , )x t u x t uε ε ε εϕ ϕ ϕ +=  for any 
1 2 1 2, ,ε ε ε ε+ ∈ Δ  and ( , , )x t u ∈ Ω ;

(3) if ( , , ) ( , , )x t u x t uεϕ =  for any ( , , )x t u ∈ Ω , then 0ε = .
The other notations ( , , ; ), ( , , ; ), ( , , ; )x t ux x t u t x t u u x t uϕ ε ϕ ε ϕ ε= = =  are used as the same meaning as

( , , ) ( , , )x t u x t uεϕ = . The transformed variable u  with delay term and its derivatives are defined by
( , )u u x tτ τ= −  and / , /x tu u x u u t= ∂ ∂ = ∂ ∂ , respectively. Consider DPDE

(2.1) ( , , , , , ) 0x tF x t u u u uτ = .
[6] shows the derivative of an equation, with the transformed variables , ,x t u  and derivatives ,x tu u , with
respect to parameter ε  vanishes if the transformation is symmetry :
(2.2) i

(2.1)
0,(2.1)

( , , , , , )
( , , , , , ) 0

x t

x t

F x t u u u u
XF x t u u u u

τ
τ

εε =

∂
= ≡

∂
.

The operator iX  is defined by i ( ) ( ) x t

x t

u u
x t u x t u uuX u u u u τ

τ τ τ τ τζ ξ η ζ ξ η ζ ζ= − − ∂ + − − ∂ + ∂ + ∂ , where

( ) ( )

( , , ) ( , , ;0), ( , , ) ( , , ;0), ( , , ) ( , , ;0),

           ( , , ), ( , , ), ( , , ),

                 , ,x t

x t u

u u
x x t t x t

x x x u x xx uu

x t u x t u x t u x t u x t u x t u

x t u x t u x t u

D u u D u u

D u u uτ

τ τ τ τ τ τ

τ

ϕ ϕ ϕ
ξ η ζ

ε ε ε
ξ ξ τ η η τ ζ ζ τ

ζ ζ ξ η ζ ζ ξ η

∂ ∂ ∂
= = =

∂ ∂ ∂
= − = − = −

= − − = − −

= ∂ + ∂ + ∂ + ∂ ,

,
x t

t t

xt u

t t t u t xt u tt uu

u

D u u u uτ
τ

+ ∂ +

= ∂ + ∂ + ∂ + ∂ + ∂ +

…

…

The operator iX  is is called a canonical Lie-Bäcklund infinitesimal generator of a symmetry. Equation (2.2) is
called a determining equation (DME). Since i

(2.1)
( , , , , , ) 0x tXF x t u u u uτ ≡ , we say that the operator iX  is

admitted  by equation (2.1) or equation (2.1) admits the operator iX . Lie's theory [7,8,9] shows the generator is
one-to-one correspondent to the symmetry. This generator is also equivalent to an infinitesimal generator [8]
(2.3) 

x t uX ξ η ζ= ∂ + ∂ + ∂ .

3 Finding and solving the determining equation

The DME for ( ),t xu uu G u uτ+ =  can be found by letting ( ),t xF u uu G u uτ= + −  and substitute it into
equation (2.2),
(3.1) i ( )( )

( ),
, 0

t x
t x u G u u uu

X u uu G u u τ

τ

= −
+ − ≡ .

By letting 
t xu G uu= −  so ( )2 ,xt x u x x xxuu u G u G u uuτ

τ= + − − tt t u t x t xtuu uG u G u u uuτ
τ= + − −  and

,t xu G u uτ τ τ τ= −  where
where ( ), ,G G u uτ τ ττ= ( , 2 ),u u x tττ τ= − ( , ),t tu u x tτ τ= − τ τ= −( , )x xu u x t . Thus DME (3.1) becomes

(3.2) [ ] [ ]

[ ]

( ) ( ) ( )

( ) ( ) 0

x x t x u t x uu

t x u u t x uu

u G u u u u G u G

G u G G G G u G

τ

τ

τ τ τ τ

τ τ τ

η η ξ ξ η η η ξ ξ ξ ζ

η η η η η ζ ζ ζ ζ ζ

− + − + + + − + + +

− + + + − − − + + + ≡
.

By the theory of existence of a solution of a delay differential equation, the initial value problem has a particular
solution corresponding to a particular initial value. Because initial values are arbitrary, variables u , u τ  and
their derivatives can be considered as arbitrary elements. Since every transformed-solution ( , )u x t  is a solution
of equation (2.1), the DME must be identical to zero. Thus, if DME (2.2) is written as a polynomial of variables
and their derivatives,  the coefficients of these variables in the equations must vanish. In order to solve a DME,



one solves the several equations of these coefficients. This method is called splitting the DME. Unknown
functions ξ , η  and ζ  can be obtained from this process.

By splitting equation (3.2) with respect to 
xu
τ , one obtains ( ) 0uG uτ

τ τ τη η ξ ξ⎡ ⎤− + − ≡⎣ ⎦ . Since equation
(1.2) is considered as a DPDE, it is assumed 0uG τ ≠ . The equation is simplified to
(3.3) ( ) 0u τ τ τη η ξ ξ− + − ≡
By the assumption ξ  and η  depend on variables , ,x t u  while τξ  and τη  depend on , ,x t u τ , if one differentiates
equation (3.3) w.r.t. u , the derivative becomes 0u uu τη ξ− ≡ . Splitting the equation w.r.t u τ  implies 0uξ =
and 0uη = , which means ξ  and η   do not depend on u . By the similar structure of τξ  and ξ , and τη  and η ,
both τξ  and τη  depend on only variables x  and t . Equation (3.3) can be split again w.r.t. u τ  which implies

( , ) ( , )x t x tτξ ξ=  and ( , ) ( , )x t x tτη η= . The conditions obtained mean ξ  and η  are periodic functions w.r.t. t
with period τ , i.e.
(3.4) ( , ) ( , ),   ( , ) ( , ).x t x t x t x tξ τ ξ η τ η− = − =

Again, splitting the DME w.r.t. 
xu , one gets

(3.5) ( ) ( ),    t x t x t x t xu u u u u uτ τ τ τζ ξ ξ η η ζ ξ ξ η η= + − + = + − + .
Substitute , ,ξ η ζ  and τζ  into the DME and differentiate it with respect to u τ ,

(3.6) [ ]( ) [ ]( )
( ) ( )( )22 3 2 0

t xuu u u uu u u

t xuu u u u uu u u u u

G G G u G u

G u G u G G u G u G u G u

τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ

τ

τ τ τ

ξ ξ

η η

− + + − + +

+ − + + − + ≡

Here if we consider equation (3.6) as A B C D 0t x t xξ ξ η η+ + + ≡ , which may be written in a vector form as
(3.7) A B C D, , , , , , 0,t x t xξ ξ η η ⋅ ≡
where [ ]A = ,uu u uG Gτ τ τ− +  [ ]B = ,uu u uG u G uτ τ τ

τ− +  C = uu u u uG u G u Gτ τ τ τ
τ+ −  and

( )D = 22 3 2uu u u u uG u G u G u G uτ τ τ τ τ
τ τ+ − + , we are able to classify equation (1.2) as the followings.

3.1  The kernel of admitted Lie groups

The set of symmetries, which are admitted for any functional appeared in the equation is called a kernel of
admitted generators. Assume equation (3.6) is valid for any functional G . Since G ,
uG τ , 

uuG τ , 
u uG τ τ  vary arbitrarily, the set spanned by A B C D, , ,  has dimension 4. Thus , , ,t x t xξ ξ η η  must be a

zero vector, i.e. all of , , ,t x t xξ ξ η η  vanish. This implies ξ  and η  are constants and ζ  is zero. Let ξ  and η  be
denoted by 

1C  and 
2C , respectively. The infinitesimal generator admitted by equation (1.2) is

1 2x tX C C= ∂ + ∂ . By the theory from group analysis, the characteristic equations dx dt du
ξ η ζ

= =  imply

( )2 1u f C x C t= −  is a representation of a solution. It reduces equation (1.2) into FODE

( )θ θ τ
θ

θ
+

=
−

1

2 1

( ), ( )
'( ) ,

( )

G f f C
f

C f C
where 

2 1C x C tθ = − .

3.2  Extension of the kernel

Extensions are symmetries for the particular functional G . Here, for the sake of simplicity, case A =0  is
considered only. For this case, it implies
(3.8) ( , ) ( ) ( )G u u g u u H uτ τ= − + ,

where g  is an arbitrary function of u u τ−  such that 0
g
u τ

∂
≠

∂
 (or ' 0g ≠ ) and H  is an arbitrary function of

variable u . Equation (3.6) is reduced into the form
(3.9) ( ) [ ]( ) ( ) [ ]( )22'' ' '' '' 3 2 ' 0x t xu u g g u u g u u g u u gτ τ τ τξ η η ⎡ ⎤− + − − + − − + − ≡⎢ ⎥⎣ ⎦

.

Equation (3.9) can be considered as a vector form , , , , 0x t x A B Cξ η η ⋅ ≡ , where ( ) '',u u gA τ= −

[ ]' ''g u u gB τ= − −  and ( ) [ ]22 '' 3 2 'u u g u u gC τ τ⎡ ⎤= − − + −⎢ ⎥⎣ ⎦
. Let V  be the set spanned by vector , ,ABC .

All possible cases which make equation (3.9) valid are considered according to the dimension of V .



3.2.1 dimV =3. This condition means vector , ,x t xξ η η  must be a zero vector, i.e. , ,x t xξ η η  vanish. Thus
the DME is simplified to '( ) '( ) ''( ) 0H u t tξ ξ− + = . The derivative of the DME w.r.t. u  is ''( ) '( ) 0H u tξ− = .
- Case ''( ) 0H u = , Here 

1 2( )H u H u H= +  is a solution of the equation, where 
1 2,H H  are arbitrary constants.

However, by the arbitrariness of function g , 
2H  can be omitted. The DME is 

1 '( ) ''( ) 0H t tξ ξ− + = , which has
1

1 2
H tC e Cξ = +  as a solution, where 

1 2,C C  are arbitrary constants. The periodic condition (3.4) of ξ  implies
( )1 1

1 2 1 2
H t H tC e C C e Cτ− + = + . The condition is valid for 

1 0H =  or =1 0C . For this case ξ  must be a constant.
- Case ''( ) 0H u ≠ . The equation immediately implies ξ  is a  constant.

Both two cases show equation ( , ) ( ) ( )G u u g u u H uτ τ= − +  admits 
x tX ξ η= ∂ + ∂ , where ξ  and η  are

arbitrary constants and ,g H  are arbitrary functions. For dimV =3, it has the same solution with the kernel case.
3.2.2 dimV =2. This condition means there exists a constant vector , , 0α β γ ≠  which is orthogonal to set

V , i.e. , , , , 0ABC A B Cα β γ α β γ⋅ = + + = . By changing of variable ( )z u u τ= − , the equation is

derived to ( )( ) '' ( 3 ) ' 2 '' ' 0z z g z g u zg gτα β γ β γ γ− + + + + − + = . Splitting the equation w.r.t. u τ , we have
(3.10) ( )2 '' ' 0zg gγ − + = ,
(3.11)   ( ) '' ( 3 ) ' 0z z g z gα β γ β γ− + + + = .
- Case 0γ ≠ . Solving equation (3.10) makes 3/2

1 2( )g z C z C= + ,

  where 
1 2,C C  are arbitrary constants. Equation (3.11) is simplified to ( )3/2

1

3
[ ] 5 0

4
C z zα β γ+ + = . By the

arbitrariness of z , α β+  and γ  must vanish. This case contradicts to the assumption 0γ ≠ .
- Case 0γ = . Equation (3.15) is reduced to
(3.12) ( ) '' ' 0z g gα β β− + =
If 0α β− =  (or α β= ) it makes ' 0gβ = . This case contradicts to the condition , , 0α β γ ≠  is not zero and

' 0g ≠ . Condition 0α β− ≠  (or α β≠ ) will be considered only.
For the conditions 0γ = , α β≠ , equation (3.12) is considered into two cases :

Case 1
β

α β
= −

−
 , i.e. 2α β= . The above condition α β≠  implies 0α ≠ . The equation can be reduced

to '' ' 0zg g+ = , which has a solution 
1 2( ) lng z C z C= + , where 

1C  is a nonzero arbitrary constants, 
2C  is

a constant. However, the constant 
2C  can be omitted because of the arbitrariness of H .   Substitute g  into

the DME and differentiate it w.r.t. u τ , the equation calculated is [ ]1 2 4 0t x x x

C
u u

u u
τ

τ η ξ η η− + + =
−

.

Since 
1 0C ≠  and unknown functions ξ  and η  depend on ( , )x t , the equation can be split w.r.t. u  and u τ

which implies ( )tη η=  and 
2( , ) 2 '( ) ( )x t t x tξ η ξ= + , where 

2ξ  is an arbitrary function of t . Substitute
both obtained functions into the DME :

(3.13)        [ ] [ ] 1 2 22 '''( ) ''( ) '( ) 3 ''( ) '( ) '( ) '( ) ''( ) '( ) '( ) 0t t H u x t t H u u C t t H u tη η η η η ξ ξ− + − − + − = .
Since unknown functions 

2, ,Hξ η  do not depend on x , then '''( ) ''( ) '( ) 0t t H uη η− = . This can be
considered into subcases '( ) 0H u =  and '( ) 0H u ≠ .
(1) '( ) 0H u = , i.e. H   is a constant. Then '''( ) 0tη = . The periodic condition implies η  is only a constant.
The DME is simplified to ξ =2 ''( ) 0t . 

2ξ  is also a constant by the periodic condition. This subcase shows

1 ln( )t xu uu C u u Hτ+ = − +  admits the generator
x tξ η∂ + ∂  where , ,H ξ η  are arbitrary constants.

(2) '( ) 0H u ≠ . The mixed derivative of DME (3.13) w.r.t. x  and u  shows 2 ''( ) ''( ) 0t H uη− = . This can
be considered into two subcases  ''( ) 0H u =  and ''( ) 0H u ≠ .

- ''( ) 0H u = . It implies 
1 2H H u H= + , where 

1 2,H H  are arbitrary constants and 
1 0H ≠ . The

derivative of equation (3.13) w.r.t. x  is ( )η η− =12 '''( ) ''( ) 0t H t . Thus its solution is
1

3 4 5
H tC C t C eη = + + . By the periodic condition, 

4C  and 
5C  must identical to zero, i.e. η  is a constant.

The DME is reduced to 
2 1 2''( ) '( ) 0t H tξ ξ− = , which has a solution 1

2 6 7
H tC C eξ = + . Also the periodic

condition of ξ  implies 
7 0C = . Then 

1 1 2ln( )t xu uu C u u H u Hτ+ = − + +  admits the generator

6 3x tC C∂ + ∂ .



- ''( ) 0H u ≠ . The equation implies ''( ) 0tη = , i.e. with the periodic condition η  is a constant only.
The DME is reduced to 

2 2''( ) '( ) '( ) 0t H u tξ ξ− = . Differentiate the equation w.r.t. u , ξ− =2''( ) '( ) 0H u t , it
implies 

2ξ  is a constant.
All above cases shows ( )u f x tη ξ= − , where ,ξ η  are arbitrary constants and f  is arbitrary function,

is solution of 
1 ln( ) ( )t xu uu C u u H uτ+ = − + , where 

1C  is a nonzero arbitrary constant and H  is an
arbitrary function of u .

Case 1
β

α β
≠ −

−
. Let β

δ
α β

=
−

. Hence the solution of equation (3.12) is 1
1 2( )g C u u Cτ δ+= − + ,

where 
1C  is a nonzero arbitrary constants, 

2C  is a constant. However, the constant 
2C  can be omitted

because of the arbitrariness of H . Splitting the DME equation w.r.t. u τ  shows
(3.14) ( ) ( )1 1 ( ) (1 ) 3 2 ( ) 0x t tC u u u u u uτ δ τ τδ δξ δ η δ η⎡ ⎤+ − + − + − − + =⎣ ⎦ .

Since ξ  and η  depend on ( , )x t  then equation (3.14) can be split w.r.t. u  and u τ . It implies ( )3 0xδ η− =
and ( )2 0xδ η− + = . The arbitrariness of δ  implies 0xη = , i.e. ( )tη η= . Equation  (3.14) is simplified to

(3.15) (1 ) '( ) 0x tδξ δ η+ − = .
Case 0δ ≠ .

(1) If  1δ = , equation (3.15) shows 0xξ = , i.e. ( )tξ ξ= . The DME is reduced to

[ ]''( ) ''( ) 2 '( ) ( ) '( ) '( ) '( ) 0t t u t H u t u t H uξ η η η ξ− − + − = .
The second derivative of DME w.r.t. u  implies [ ]'( ) '( ) '''( ) 0t u t H uη ξ− = .

If '''( ) 0H u ≠ , then '( ) '( ) 0t u tη ξ− = . Splitting the equation w.r.t. u  shows ξ  and η   are constants.
Thus the solution of equation 

1 ln( ) ( )t xu uu C u u H uτ+ = − +  is also ( )u f x tη ξ= − .
Suppose '''( ) 0H u = . This means 2

1 2 3H H u H u H= + + ,  where 
1 2 3, ,H H H  are arbitrary constants.

The derivative of the DME w.r.t. u  is
[ ]1 22 '( ) ''( ) '( ) 0H t t H tξ η η− + + = .

(a) 
1 0H =  and 

2 0H = . The periodic condition implies η  is a constant. The DME is reduced to
''( ) 0tξ = . So ξ  is also a constant.

(b) 
1 0H =  but 

2 0H ≠ .  The equation shows 2
3 4

H tC C eη −= + . The periodic condition reduces term
2

4
H tC e−  which makes η  a constant. The DME is reduced to 

2''( ) ( ) 0t H tξ ξ− = , also ξ  must be a constant.

(c) 
1 0H ≠ . Then 2

1

''( ) '( )
'( )

2
t H t

t
H

η η
ξ

+
= − . The DME is simplified to '''( ) '( ) 0t tη λη+ = , where

( )21 1 3 24 ( )H C H Hλ = + − .
If 0λ = , this shows '''( ) 0tη = . ξ  can be only a constant and ξ  is a constant also.

       If 0λ < , 
3 4 5

t tC C e C eλ λη −= + + . The periodic property of η  implies 
4C  and 

5C  vanish and ξ  must
be also a constant.
       If 0λ > , 

3 4 5cos sinC C t C tη λ λ= + + . By the periodic condition, it is considered into two cases :

- 2π
τ

λ
≠ . In this case, 

4C  and 
5C  must vanish and it implies ξ  to be a constant.

- 2π
τ

λ
= . Here ξ  is equal to 

6 7 8cos sinC C t C tη λ λ= + + , where 
6C  is an arbitrary constant,

2 4 5 2 5 4
7 8

1 1

,
2 2

H C C H C C
C C

H H
λ λ+ +

= − = − . By the condition (3.5),

( ) ( )8 5 7 4cos sinC C u t C C u tζ λ λ λ⎡ ⎤= − + − +⎣ ⎦
The solution of equation 2 2

1 1 2 3( )t xu uu C u u H u H u Hτ+ = − + + +  can be found from the characteristic

equations, i.e.   
 ( ( ))

p dt p dt
u e qe dt x tψ

− ⎡ ⎤∫ ∫⎢ ⎥= + −
⎢ ⎥⎣ ⎦
∫ F , where

5 4

3 4 5

cos sin
cos sin

C t C t
p

C C t C t
λ λ

λ
λ λ
−

=
+ +

, 8 7

3 4 5

cos sin
cos sin

C t C t
q

C C t C t
λ λ

λ
λ λ
−

=
+ +

, 6 7 8

3 4 5

cos sin
( )

cos sin
C C t C t

t dt
C C t C t

λ λ
ψ

λ λ
+ +

=
+ +∫ ,



F is an arbitrary function, 1 3 4 5 6 1 2 3, , , , , , ,C C C C C H H H  are arbitrary constants, 1 0H ≠ ,
7 8, , ,C Cλ τ

are the constants which were defined in this section.

(2) If  1δ ≠ , equation (3.15) implies 
2

1
'( ) ( )t x t

δ
ξ η ξ

δ
⎛ ⎞− ⎟⎜= +⎟⎜ ⎟⎜⎝ ⎠

, where 
2( )tξ  is an arbitrary function of t .

Substitute ξ  into the DME and differentiate it w.r.t. both x  and u , we obtain 1
''( ) ''( ) 0H u t

δ
η

δ
⎛ ⎞− ⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠

.

This may be considered into two subcases.
(a) ''( ) 0H u ≠ . This implies ''( ) 0tη = . Similar to the previous case, η  is a constant. The DME is reduced
to 

2 2''( ) '( ) '( ) 0t H u tξ ξ− = . The derivative of the equation w.r.t. u  shows 
2''( ) '( ) 0H u tξ = , which means

2ξ  is a constant. This shows both ξ  and η  are constants.
(b) ''( ) 0H u = . Then 

1 2H H u H= + , where 
1 2,H H  are arbitrary constants. Derivative of the DME

w.r.t. u  is 
1

2
''( ) '( ) 0t H t

δ
η η

δ
⎛ ⎞− ⎟⎜ − =⎟⎜ ⎟⎜⎝ ⎠

.

If  2δ = , the derivative of the DME w.r.t. x  gives us 
1'''( ) ''( ) 0t H tη η− = . Similar to the previous

case, η  is a constant.  The DME is also ξ ξ− =2 1 2''( ) '( ) 0t H t  and its solution is a constant.
If  2δ ≠ . For arbitrary constant 

1H  and periodic property, η  must be a constant. The DME is
ξ ξ− =2 1 2''( ) '( ) 0t H t  and its solution is a constant.
Both subcases show equation 1

1( ) ( )t xu uu C u u H uτ δ++ = − + , for 1δ ≠ − , has the same solution with
the kernel case.

Case 0δ = . Equation (3.15) shows '( ) 0tη = , i.e. η  is a constant. The DME is reduced to
2( ) '( )( ) 2 0x t x xx xt ttH u H u u u uξ ξ ξ ξ ξ ξ− + + + + = . In order to classify a solution of DPDE, we have to

analyze by the following cases :
(1) 0xξ = . The DME is simplified to ''( ) '( ) '( ) 0t H u tξ ξ− = . Its derivative w.r.t. u  is ''( ) '( ) 0H u tξ− = .

If ''( ) 0H u = , then 
1 2H H u H= + , where 

1 2,H H  are arbitrary constants. The DME is

1''( ) '( ) 0t H tξ ξ− = .  With the periodic condition, ξ  can be only a constant.
If ''( ) 0H u ≠ , then '( ) 0tξ =  which show ξ  is also a constant.

(2) 0xξ ≠ . The third derivative of the DME w.r.t. u can be rewritten as

(3.16) (4) '''( ) 2 ( ) 0t

x

u H u H u
ξ
ξ

⎛ ⎞⎟⎜ ⎟+ + =⎜ ⎟⎜ ⎟⎜⎝ ⎠
.

The derivatives of equation (3.16) w.r.t. x  and t  give (4)( ) 0t

x

d
H u

dt
ξ
ξ

⎛ ⎞⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜⎝ ⎠
 and (4)( ) 0t

x

d
H u

dx
ξ
ξ

⎛ ⎞⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜⎝ ⎠
. We

consider the problem into two subcases :
- (4)( ) 0H u =  then '''( ) 0H u =  which makes 2

1 2 3H H u H u H= + +  satisfying equation (3.16). The
second derivative of the DME w.r.t. u  is ( )12 0xx xHξ ξ− = .
If 

1 0H =  then 
1 2( , ) ( ) ( )x t t x tξ ξ ξ= + . The derivative of the DME w.r.t. u  shows 

12 '( ) 0tξ = , i.e. 
1ξ  is a

constant. The DME is 
2 2 2 3 1''( ) '( ) 0t H t Hξ ξ ξ− + = . Let ( )22 3 14H Hλ ξ= − . With the periodic condition,

function 
2ξ  can be found according to λ  :

(a) 0λ ≥ . 
2ξ  must be a constant. Then the DME is 

3 1 0H ξ = . If 
3 0H ≠  then 

1 0ξ = . Thus

1 3( )t xu uu C u u Hτ+ = − +  admits the same generator and has the same solution with the kernel case.
However, if 

3 0H =  and 
1 0ξ ≠  then 

1 2t xu uu C u C u τ+ = + , where 
1 2,C C  are arbitrary constants, admits

( )1 2 1x t ux uξ ξ η ξ+ ∂ + ∂ + ∂  and has a solution ( ) ( )1 2 1 2 1ln( )u x x tξ ξ η ξ ξ ξ= + + −F , where F  is an
arbitrary function. This solution reduces the equation (3.17) into an FODE,

( ) ( )[ ] ( )[ ] ( ) ( )2

1 2 11 C Cχ η χ χ χ χ ξ τ− + = + +F' F F F F

where 
1 0ξ ≠ , η  are arbitrary constants and 

1 2 1ln( )x tχ η ξ ξ ξ= + − .

(b) 0λ < . Let /2ρ λ= − . Then ( )
2

2
2 3 4cos sin

H
t

e C t C tξ ρ ρ= + . With the periodic condition, 
2H  must

be identical to zero, 
3 1 0H ξ >  and 2π

τ
λ

= . Then equation 
1 3( )t xu uu C u u Hτ+ = − + , 

3 0H ≠ , admits

( ) ( )1 3 4 1 3 4cos sin sin cos ,x t ux C t C t u C t C tξ ρ ρ η ξ ρ ρ ρ ρ+ + ∂ + ∂ + − + ∂



where 
3 1 3 4, ,H C Cρ ξ=  are arbitrary constants. This case is too complicated to find an exact form of a

solution.
If 

1 0H ≠  then ξ ξ ξ= +1
1 2( , ) ( ) ( )H xx t t e t . The derivative of DME w.r.t. u  is 

1 22 '( ) 0H tξ− =  which means

2 '( ) 0tξ =  or 
2ξ  is a constant. DME is simplified to ( )1

1 2 1 1 3 1''( ) '( ) ( ) 0H xe t H t H H tξ ξ ξ− + = .
2

2 1 3( ) 4H H Hλ = − . With the periodic condition, function 
1ξ  can be found according to λ  :

(a) 0λ ≥ . 
1ξ  must be a constant.

If 
2 0H > , then 

1 0ξ =  and DME vanishes, i.e. the solution form is not different to the kernel case.
If 

2 0H = , then 
1ξ  is any constant. The DME is 1

1 3 1 0H xH H eξ = . If 
3 0H ≠ , the equation has the similar

solution with the previous case. On the other hand, 
3 0H =  implies 2

1 1( )t xu uu C u u H uτ+ = − +  admits

( )1 1
1 2 1 1
H x H x

x t ue H ueξ ξ η ξ+ ∂ + ∂ + ∂ . This means ( )
1

1

1

1
1 2

2 1 1 2

ln
H x

H x
H x

e
u e t

H e
η ξ

ξ ξ
ξ ξ ξ

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟⎟= + −⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎟⎜⎜ +⎝ ⎠⎝ ⎠
F  is a

solution of the equation and reduces the FPDE to [ ]21 2
1 - 1

H
C

τ ξ
η

Θ Θ+ Θ
Θ =

Θ
F( )- F( )+ F( )

F'( )
F( )

, where

1

1

1

2 1 1 2

ln
H x

H x

e
t

H e
η ξ

ξ ξ ξ

⎛ ⎞⎟⎜ ⎟Θ = −⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
 and 

1C  is an arbitrary constant.

(b) Let /2ρ λ= − . Then ( )
2

2
2 3 4cos sin

H
t

e C t C tξ ρ ρ= + . With the periodic condition, 
2H  must be

identical to zero, 
1 3 0H H >  and 2π

τ
λ

= . Then equation 2
1 1 3( )t xu uu C u u H u Hτ+ = − + + , 

3 0H ≠ ,

admits
( )( ) ( ) ( )1 1

3 4 2 1 3 4 3 4cos sin cos sin sin cos ,H x H x
x t ue C t C t e H u C t C t C t C tρ ρ ξ η ρ ρ ρ ρ ρ⎡ ⎤+ + ∂ + ∂ + + + − + ∂⎣ ⎦

where ρ = 1 3H H  and 
3 4,C C  are arbitrary constants. This case is too complicated to find an exact form of

a solution.
- (4)( ) 0H u ≠ .It means /t xξ ξ  is a constant which has a solution ( )x Ktξ ψ= + , where K  is a constant
and ψ  is an arbitrary function. Substitute ξ  into equation (3.16), then (4)( ) ( ) 2 '''( ) 0K u H u H u+ + = . The
equation has a solution 2

1 2 3 4( ) ( )ln( )H u H K u K u H u H u H= + + + + + , where 
1 2 3 4, , ,H H H H are

constants. The DME is simplified to
[ ] [ ] [ ]2 2

2 1 1 4 1 3'' ' 2 '' ( 2 ) ' '' ( ) ' 0u H u k H H K K H K H Hψ ψ ψ ψ ψ ψ− + − + + + − + = .

Splitting the equation w.r.t. 2u  and u  shows ψ  is a constant. This case has the same solution with the
kernel case.

3.2.3 dimV =1. Here , ,ABC  can be represented by , , , , ( , )u uA BC τφα β γ= , where , ,α β γ  are

arbitrary constants which , , 0, 0, 0α β γ ≠  and φ  is a nonconstant function. The system of equations

corresponding to the vector is
(3.17) ( ) '' ( , )u u g u uτ ταφ− = ,
(3.18)          ' ( ) '' ( , )g u u g u uτ τβφ− − = ,
(3.19)             2 2( ) '' 3 ' 2 ' ( , )u u g ug u g u uτ τ τγφ⎡ ⎤− − + − =⎣ ⎦ .

- Case 0α ≠ . Equation (3.19) can be derived from equation (3.17) and (3.18) into
[ ](2 3 ) ( 3 2 ) 0u u τα β α β γ φ+ + − − − =

Since φ  is not identical to zero then its coefficient must vanish and implies 0α β γ= = = . This
contradicts to the assumption.
- Case 0α = . Here '' 0g = , which implies 1 2( )g C u u Cτ= − + , where 1 2,C C  are arbitrary constants.
Substitute g  into equation (3.18), 

1 ( , )C u u τβφ=  is obtained. If 0β = , it implies 
1 0C =  and g  is a

constant which is invalid. Also if β  does not vanish, the equation implies φ  is a constant function which
also contradicts to the assumption.

This proves that case dimV =1 is invalid.
3.2.4 dimV =0. , ,ABC  can be consider as a constant vector , ,α β γ  , i.e.

(3.20) ( ) ''u u gτ α− = ,
(3.21)          ' ( ) ''g u u gτ β− − = ,



(3.22)             2 2( ) '' 3 ' 2 'u u g ug u gτ τ γ⎡ ⎤− − + − =⎣ ⎦ ,

where , ,α β γ  are arbitrary constants. Substitute equation (3.20) into equation (3.21), it leads to 'g α β= +
and '' 0g = . Substitute both values into equation (3.22), the equation is reduced to

3( ) 2( )u u τα β α β γ+ − + = .
By the arbitrariness of u  and u τ , α β+  vanishes which makes ' 0g = . It contradicts to the assumption. This
case is invalid also.

4 Conclusion

Solutions of equation 2 2
1 1 2 3( )t xu uu C u u H u H u Hτ+ = − + + + , 

1 2t xu uu C u C u τ+ = +
2

1 1( )t xu uu C u u H uτ+ = − +  and 2
1 1 3( )t xu uu C u u H u Hτ+ = − + +  are presented in the article. For other

forms of equation ( ) ( )t xu uu g u u H uτ+ = − + , where ,g H  are arbitrary functions, the solution is
( )u f x tη ξ= −  where f  is an arbitrary function and ,ξ η  are arbitrary constants.
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