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Abstract. Equation
∂u

∂t
(x, t) + u(x, t)

∂u

∂x
(x, t) = G (u(x, t − τ)) is a delay partial differential equation with

an arbitrary functional G. Group analysis method is applied to find symmetries of the equation and to make group

classification. Representations of analytical solutions and reduced equations are obtained from the symmetries.

1. Introduction

Consider delay partial differential equation with delay τ > 0

(1.1)
∂u

∂t
(x, t) + u(x, t)

∂u

∂x
(x, t) = G (u(x, t − τ)) .

For simplicity, notation uτ will be used to denote u(x, t − τ), u denote u(x, t) and ux, ut mean first partial

derivatives of u with respect to x and t, respectively. Equation (1.1) can be simply written as

(1.2) ut + uux = G(uτ ).

Equation (1.2) is similar to Hopf or inviscid Burgers’ equation [1]. However, (1.2) has a delay term, which

makes the equation difficult to be solved [2]. Applications of delay differential equations can be found in [2, 3, 4,

5].

One of the powerful methods for finding analytical solutions of differential equations is group analysis. Group

analysis was introduced by Shopus Lie in 1895 [6, 7, 8]. Group analysis is applied for finding analytical solutions

of many types of ODEs and PDEs [8]. Later, it was developed to apply to integro-differential equations [8], delay

differential equations [3], functional differential equations [4, 5] and stochastic differential equations [9].

In this manuscript, group analysis is applied to find symmetries of equation (1.2). Classification of (1.2) with

respect to groups of symmetries admitted by the equation is done. Representations of analytical solutions and

reduced equations are also presented.

2. Applications of group analysis to delay differential equations

Let ϕ : Ω×� → Ω be a transformation where Ω is a set of variables (x, t, u) and � ⊂ R is a symmetric interval

with respect to zero. Variable ε is considered as a parameter of transformation ϕ, which transforms variable

(x, t, u) to (x̄, t̄, ū) of the same space. Let ϕ(x, t, u; ε) be denoted by ϕε(x, t, u). The set of functions ϕε forms a
one-parameter transformation group of space Ω if the following properties hold [6, 7, 8]:

(1) ϕ0(x, t, u) = (x, t, u) for any (x, t, u) ∈ Ω;

(2) ϕε1 (ϕε2(x, t, u)) = ϕε1+ε2(x, t, u) for any ε1, ε2, ε1 + ε2 ∈ � and (x, t, u) ∈ Ω;

(3) if ϕε(x, t, u) = (x, t, u) for any (x, t, u) ∈ Ω, then ε = 0.

The other notations x̄ = ϕx(x, t, u; ε), t̄ = ϕt(x, t, u; ε), ū = ϕu(x, t, u; ε) are used as the same meaning as

ϕε(x, t, u) = (x̄, t̄, ū). The transformed variable u with delay term and it’s derivatives are defined by ūτ =
ū(x̄, t̄ − τ) and ūx̄ = ∂ū/∂x̄, ūt̄ = ∂ū/∂t̄, respectively. Suppose that the transformations map a solution u(x, t)
of differential equation

(2.1) F (x, t, u, uτ , ux, ut) = 0

into a solution of the same equation. These transformations are called symmetries. In [5], it is shown that for a

symmetry

(2.2)
∂F (x̄, t̄, ū, ūτ , ūx̄, ūt̄)

∂ε

∣∣∣
ε=0, (2.1)

= X̃F (x, t, u, uτ , ux, ut)
∣∣∣
(2.1)

≡ 0.
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The operator X̃ is defined by

X̃ = (ζ − uxξ − utη)∂u + (ζτ − uτ
xξτ − uτuτ

t η)∂uτ + ζux∂ux
+ ζut∂ut

,

where

ξ(x, t, u) =
∂ϕx

∂ε
(x, t, u; 0), η(x, t, u) =

∂ϕt

∂ε
(x, t, u; 0),

ζ(x, t, u) =
∂ϕu

∂ε
(x, t, u; 0), ξτ = ξ(x, t − r, uτ ),

ητ = η(x, t − r, uτ ), ζτ = ζ(x, t − r, uτ ),
ζux = Dx (ζ − uxξ − utη) , ζut = Dt (ζ − uxξ − utη) ,

Dx = ∂x + ux∂u + uτ
x∂τ

u + uxx∂ux
+ uxt∂ut

+ . . . ,

Dt = ∂t + ut∂u + uτ
t ∂τ

u + uxt∂ux
+ utt∂ut

+ . . . .

The operator X̃ is called a canonical Lie–Bäcklund infinitesimal generator of a symmetry. Equation (2.2) is

called a determining equation. Lie’s theory [6, 7, 8] shows that there is a one-to-one correspondence between the

generator and a symmetry. This generator is also equivalent to an infinitesimal generator [7]

(2.3) X = ξ∂x + η∂t + ζ∂u.

By the theory of existence of a solution of a delay differential equation, the initial value problem has a particular

solution corresponding to a particular initial value. Because initial values are arbitrary, variables u, uτ and their

derivatives can be considered as arbitrary elements. Since every transformed-solution ū(x̄, t̄) is a solution of

equation (2.1), the determining equation must be identical to zero. Thus, if determining equation (2.2) is written

as a polynomial of variables and their derivatives, the coefficients of these variables in the equations must vanish.

In order to solve a determining equation, one solves the several equations of these coefficients. This method is

called splitting the determining equation. Unknown functions ξ, η and ζ can be obtained from this process.

3. Symmetries of (1.2)

We define determining equation for ut + uux = G(uτ ) by letting F = ut + uux − G(uτ ), then

(3.1) X̃(ut + uux − G(uτ ))
∣∣∣
ut=G−uux

≡ 0.

Splitting determining equation (3.1) with respect to uτ
x, ux and later with respect to uτ , u, the equation is

simplified to

(3.2) ξ1 (G′uτ − G) = 0,

where the unknown function ξ, η and ζ are

ξ = ξ1x + ξ2, η = η1, ζ = ξ1u.

Here, ξ1, ξ2, η1 are constants.

3.1. Kernel. The set of symmetries, which are admitted for any functional appeared in the equation is called a
kernel of admitted generators. In this case, G′uτ and G are arbitrary. This implies that coefficients of G′uτ and

G vanish, ξ1 = 0. Unknown functions ξ, η, ζ are

ξ = ξ2, η = η1, ζ = 0.

For the sake of convenience, let arbitrary constants ξ2, η1 be denoted by C1, C2, respectively. The obtained

infinitesimal generator is

(3.3) X = C1∂x + C2∂t.

This generator is admitted for any functional G. By Lie’s theory, symmetry is derived from the infinitesimal

generator [7, 8]:

(3.4) x̄ = x + C1ε, t̄ = t + C2ε, ū = u.
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3.2. Extensions of the kernel. Extensions are symmetries for the particular functional G only. In this case, there

exists G(uτ ) satisfying equation (3.2). Here, the extension of kernel (3.3) will be considered. Since ξ = ξ2, η =
η1, ζ = 0 are considered in the case of kernel, then functions ξ, η and ζ for this case are

ξ = ξ1x, η = 0, ζ = ξ1u.

For the nontrivial case, ξ1 �= 0 and a solution of equation (3.2) is

G(uτ ) = kuτ ,

where k is a nonzero arbitrary constant. For the sake of convenience, let ξ1 be denoted by C3. The extension of

kernel (3.3) is

(3.5) X = C3 (x∂x + u∂u) .

The symmetry derived from X is

(3.6) x̄ = xeC3ε, t̄ = t, ū = ueC3ε.

4. Representations of solutions

Invariants are functions such that their values do not change by symmetries [6, 7, 8], i.e.

Ψ(x, t, u) = Ψ(x̄, t̄, ū),

where Ψ is an invariant for a symmetry ϕε(x, t, u) = (x̄, t̄, ū). If X = ξ∂x + η∂t + ζ∂u is an infinitesimal

generator for a symmetry ϕε, then

(4.1) XΨ(x, t, u) = 0.

Invariants of symmetries are found by solving differential equation (4.1) [7]. The system of characteristic equa-

tions for the infinitesimal generator (2.3) is
dx

ξ
=

dt

η
=

du

ζ
.

Representations of solutions are obtained from the invariants.

4.1. Representations of solutions for equation (1.2) with arbitrary functional G. For infinitesimal generator

(3.3), the system of characteristic equations is

dx

C1
=

dt

C2
=

du

0
.

Solving the system of equations, the invariants are u and C2x−C1t. For constructing a representation of solution

[6, 7], the relation between these two invariants is

(4.2) u = f1(C2x − C1t),

where f1 is an arbitrary function. We call u in equation (4.2) a representation of solution of equation (1.2) for the
infinitesimal generator (3.3).

4.2. Representations of solutions for G = kuτ . The infinitesimal generator for equation

(4.3) ut + uux = kuτ

is the linear combination of kernel (3.3) and extension (3.5) :

(4.4) X = (C1 + C3x) ∂x + C2∂t + C3u∂u.

Thus, the system of characteristic equations for infinitesimal generator (4.4) is

dx

C1 + C3x
=

dt

C2
=

du

C3u
.

Let C2 = 0. In this case, the invariants are t and
u

x + C1/C3
.

Since C1 and C3 are arbitrary and C3 �= 0, for the sake of convenience, we denote C4 = C1/C3. The repre-
sentation of a solution for equation (1.2) with the functional G = kuτ is

(4.5) u = (x + C4)f2(t),
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where f2 is an arbitrary function and C4 is an arbitrary constant.

Let C2 �= 0. In this case, the invariants are (x + C4) e−(C3/C2)t and ue−(C3/C2)t. The representation of a
solution for equation (1.2) with the functional G = kuτ is

(4.6) u = e(C3/C2)tf3

(
(x + C4) e−(C3/C2)t

)
,

where f3 is an arbitrary function. Let C5 = C3/C2, equation (4.6) is simply written as

u = eC5tf3

(
(x + C4) e−C5t

)
.

5. Reduced equations

Representations of solutions obtained in section 4 simplify equation (1.2). They reduce the number of independent

variables appearing in the equation. Substituting the representations into the equation, equation (1.2) is reduced to

an ordinary differential equation, which is called a reduced equation.

5.1. u = f1(C2x − C1t). Substituting u into equation (1.2), the equation is transformed to

−C1f
′
1(θ) + C2f1(θ)f ′

1(θ) = G(f1 (θ + C1τ)) ,

where θ = C2x − C1t. This equation may be written in the other form,

(5.1) f ′
1(θ) =

G(f1 (θ + C1τ))
C2f1(θ) − C1

.

5.2. u = (x + C4)f2(t). Substituting u into equation (4.3), the equation is transformed to

(x + C4)f ′
2(t) + (x + C4) [f2(t)]

2 = k(x + C4)f2(t − τ).

It can be simplified to

(5.2) f ′
2(t) = kf2(t − τ) − [f2(t)]

2
.

5.3. u = eC5tf3

(
(x + C4) e−C5t

)
. Substitute u into equation (4.3), the equation is transform to

C5f3(φ) − C5φf ′
3(φ) + f3(φ)f ′

3(φ) = ke−C5τf3

(
eC5τφ

)
,

where φ = (x + C4) e−C5t. The other form of the equation is

(5.3) f ′
3(φ) =

C5f3(φ) − ke−C5τf3

(
eC5τφ

)
f3(φ) − C5φ

.

Note that equation (5.1), (5.2) and (5.3) are not typical ODEs, they are functional ODEs [5].

6. Conclusion

Symmetries, representation of solutions of equation (1.2) and reduced equations are presented in section 3, 4 and 5,

respectively. Equation (1.2) is classified with respect to the symmetries into the case of G(uτ ) = kuτ (symmetry

is (3.6)) and otherwise (symmetry is (3.4)). By the review literature, there are not many examples of applications

of group analysis to delay differential equations. This manuscript presents another example.
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