
















61 
 

The 20th International and National Conference on Applied Computer Technology and Information Systems (ACTIS) and  
The International and National Conference on Business Administration (NCOBA) 2023 

A Comparative Study between Generalized Linear 
Models and Generalized Additive Models in the 

Modeling of Health Biological Signal Data  
Natakon Nawaratana1 
School of Mathematics 

Institute of Science 
Suranaree University of Technology 

Nakhon Ratchasima, Thailand 
Natakonnawaratana@gmail.com 

Amornrat Suriyawichitseranee2 
School of Mathematics 

Institute of Science 
Suranaree University of Technology 

Nakhon Ratchasima, Thailand 
amornrat@g.sut.ac.th 

Jessada Tanthanuch3 
School of Mathematics 

Institute of Science 
Suranaree University of Technology 

Nakhon Ratchasima, Thailand 
jessada@g.sut.ac.th

Abstract— The utilization of the Generalized Linear Model 

(GLM) and Generalized Additive Model (GAM) plays a crucial 

role in applications of artificial intelligence (AI) and 
mathematical modeling. However, the GAM surpasses the GLM 

in terms of its nonlinear generalizability. This research aims to 
compare the study between GLM and GAM in the modeling of 
health biological signal data. The dataset used in this study 
encompasses information about the presence or absence of 
smoking, obtained from bio-signals. The dataset is sourced from 
the National Health Insurance Service_Health Checkup 
Information (Korea) and can be accessed at 

https://www.data.go.kr/data/15007122/fileData.do. It consists of 
22 variables and includes a total of 55,692 records. In the 
research procedure, the first step involved assessing the 
correlation among variables in order to reduce the number of 
variables utilized in the model. Subsequently, the models were 

constructed considering four distributions: normal, Tweedie, 

gamma, and inverse-Gaussian distributions. The performance of 
the models was evaluated based on the Akaike information 
criterion (AIC), the root mean square error (RMSE) and the 

distance between indices of simulation and observation (DISO) 

metrics. The research findings indicate that GAM outperforms 

GLM overall, as evidenced by lower AIC, RMSE and DISO. The 
best performing forecasting models for cholesterol and 
triglyceride levels are the models created by GAM that take into 
account the normal distribution of the data. 

Keywords— generalized linear model, generalized additive 

model, biological signal data, DISO. 

I. INTRODUCTION  

  The world has experienced severe devastation due to the 
COVID-19 pandemic, which has resulted in widespread 
illness, loss of life, and significant economic disruption. 

Excess weight can elevate the risk of developing severe 
symptoms and complications associated with the disease, such 
as pneumonia, blood infections, and cardiovascular issues. 

Additionally, obesity can negatively affect the body's immune 
system, potentially making it more difficult to fight off 
infections. In these challenging times, it is more important than 
ever to take care of our individual health. Patients who are 
overweight may have an increased risk of experiencing severe 
impacts when infected with COVID-19 [1]. Regular health 
checkups are an important part of maintaining good health. 

They can help to detect and treat health problems early on, 
which can help to protect us from the serious consequences of 
COVID-19 and other health problems. Biological signal data 
refers to data collected from the human body, which serves to 
monitor health and detect potential health issues. It 
encompasses various types of data, including 
Electrocardiogram (ECG), Electroencephalogram (EEG), 
Electromyogram (EMG), respiratory monitoring, blood 
pressure monitoring, as well as measurements of cholesterol 
and triglyceride levels. These datasets enable healthcare 
professionals to assess individuals’ well-being and identify any 
underlying medical conditions [2]. Cholesterol and 
triglycerides are essential components of biological signal 
data, influencing various physiological processes. Imbalances 
in their levels can significantly impact overall health and 
increase the risk of chronic conditions [3]. Mathematics and 
statistics are crucial in modeling these biomarkers, employing 
differential equations to predict their behavior over time and 
statistical models to identify relationships with other variables.  

Statistical distributions are essential in statistics for 
modeling data across various domains, serving a multitude of 
purposes. They find applications in predicting future 
outcomes, making informed decisions, assessing event 
probabilities, and comparing populations. In the realm of 
biomedical modeling, several widely employed statistical 
distributions facilitate the analysis and interpretation of data. 

These distributions, such as the normal distribution, gamma 
distribution, inverse-Gaussian distribution, and Tweedie 
distribution, are powerful tools empowering researchers to 
extract valuable insights, make well-founded decisions, and 
draw meaningful conclusions from available data [4,5]. 

Generalized linear models (GLMs) and generalized 
additive models (GAMs) are powerful statistical tools that go 
beyond traditional linear models, enabling the modeling of 
diverse data types, even those that do not follow a normal 
distribution. GLMs and GAMs offer advanced techniques that 
enhance modeling accuracy by accommodating both normal 
and non-normal distributional assumptions and capturing 
potential linear and nonlinear relationships. While GLMs 
allow for linear relationships between variables, GAMs excel 
in capturing non-linear relationships, making them highly 
versatile for various applications in artificial intelligence (AI). 

These models find utility in predictive modeling, feature 



62 
 

The 20th International and National Conference on Applied Computer Technology and Information Systems )ACTIS( and  
The International and National Conference on Business Administration )NCOBA( 2023 

selection, and exploratory data analysis. In the realm of natural 
language processing (NLP), both GLMs and GAMs are 
valuable for modeling relationships between words and 
phrases in text. They facilitate language understanding, 
sentiment analysis, and text generation tasks. Additionally, in 
the field of computer vision, these models are essential for 
understanding intricate relationships between pixels in 
images. They enhance image classification, object detection, 
and scene understanding with greater accuracy and depth [6]. 

A key advantage of GLMs and GAMs is their ability to handle 
categorical and count data commonly encountered in 
biological signal analysis within the health field. Their 
flexibility makes them well-suited for analyzing health data. 

These models provide valuable insights into understanding 
and predicting the dynamics of cholesterol and triglyceride 
levels, benefiting research and clinical applications in the 
health field.  

This research focuses on a comparative study of utilizing 
GLMs and GAMs to model cholesterol and triglyceride levels 
using additional biological signal data. Both GLMs and GAMs 
encompass the utilization of four exponential family 
distributions: the normal distribution, gamma distribution, 
inverse-Gaussian distribution and Tweedie distribution. The 
performance of these models is evaluated using metrics such 
as Akaike information criterion (AIC), the root mean square 
error (RMSE), and the distance between indices of simulation 
and observation (DISO). 

II. RELATED STATISTICAL DISTRIBUTIONS 

In this research, we focus on 4 four exponential family 
distributions, which are the normal distribution, gamma 
distribution, inverse- Gaussian distribution and Tweedie 
distribution. 

A. Normal Distribution 

The normal distribution, commonly referred to as the 
Gaussian distribution, is a bell-shaped curve with symmetry 

that serves as a model for data distribution. In a normal 

distribution, the mean, median, and mode are all equivalent, 
and the area beneath the curve sums up to 1. The standard 

deviation of the normal distribution quantifies the dispersion 
or spread of the data. 

The formula that describes the probability density 
function (PDF) of a normal distribution is as follows: 
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where x is a random variable, μ is the mean of the distribution, 
and σ is the standard deviation of the distribution [6]. 

The normal distribution is a powerful tool for modeling, 
analyzing, and medical statistics [7].  

B. Gamma Distribution 

The gamma distribution, commonly employed for 
modeling positively skewed continuous data, is characterized 
by two parameters: the shape parameter (α) and the scale 

parameter (β). The PDF of the gamma distribution is 

expressed as follows: 
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where x is a non-negative real number, α is the shape 

parameter, β is the scale parameter, and Γ(α) is the gamma 

function. 

the gamma distribution can be utilized to predict medical 
outcomes and inform decision-making in healthcare [8]. 

C. Inverse-Gaussian Distribution 

The inverse-Gaussian distribution is a continuous 

probability distribution that was initially introduced by the 
British statistician Harold Jeffreys in 1935. It gets its name 

from being the reciprocal of the normal distribution [5]. 

The PDF of the inverse-Gaussian distribution is given by: 
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where, x is a random variable following the inverse-

Gaussian distribution, μ is the mean of the distribution, λ is 
the shape parameter, a and b are constants that depend on μ 
and λ, and ( , )    is the beta function. The mean and variance 

of the distribution are μ and 2 /  , respectively. 

The inverse-Gaussian distribution has found applications 

in medical research, such as its use in analyzing the factors 
that impact the survival of patients with oesophageal cancer 
through parametric analysis with frailty models [9]. 

D. Tweedie Distribution 

The Tweedie distribution is a versatile family of 
probability distributions frequently employed in actuarial, 
financial, and ecological applications. It is specifically 
designed to model non-negative data with skewness and 
heavy tails. Introduced by Maurice Tweedie in 1984, the 
distribution has evolved to encompass various distributions. 

The PDF of the Tweedie distribution is expressed as follows: 
12
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where μ is the mean of the distribution, σ is the dispersion 
parameter, p is the power parameter, 2( , , )c x p  is a 

normalizing constant, and ( )p  is the gamma function.  

It is intriguing to note that numerous distributions within 
the Tweedie family are characterized by the range of values 
for the index parameter. For instance, notable examples 
include the normal distribution (p=0), the gamma distribution 
(p=2), and the inverse-Gaussian distribution (p=3) [10]. 

III. MODELS 

A brief information of GLM and GAM is provided in this 
section. 

A. Generalized Linear Model 

A generalized linear model (GLM) is a flexible statistical 
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framework that extends linear regression to accommodate 
various types of response variables and their associated 
probability distributions. It provides a way to model the 

relationship between a set of predictors and a response variable 
while accounting for non-normal and non-continuous data. 

GLMs differ from traditional linear models in that they do not 
assume the normal distribution of the response variable and do 
not strictly require an expected value of the response variable 
to be a linear combination of explanatory variables. They allow 

for the use of different link functions to relate the predictors to 
the response, making them suitable for analyzing a wide range 
of data types, including binary, count, and categorical 
outcomes. The flexibility of GLMs makes them widely used in 

fields such as medicine, social sciences, and economics, where 
complex data structures and diverse response variables are 
encountered. 

The GLM incorporates a smooth and invertible link 

function denoted as ( )g   . This function transforms the 

expected value of the response variable Y , ( )E Y   to 

the summation: 

0 1 1( ) ,n ng X X        

where ( )E Y  is the expected value of the response variable 

Y , 1, , nX X   are  explanatory variables, and i  is the 

model parameter, 0, ,i n   . The proposed equation is a 

linear predictor, which incorporates information about the 
independent (explanatory) variables into the model [11]. 

B. Generalized Additive Model 

A generalized additive model ( GAM)  is a statistical 
modeling technique that extends the concept of generalized 
linear models (GLMs) by allowing for nonlinear relationships 
between predictors and the response variable.  Unlike GLMs, 
which assume linear relationships, GAMs can capture 
complex and nonlinear patterns by incorporating smooth 
functions of the predictors.  In a GAM, the response variable 
is still related to the predictors through a specified probability 
distribution and a link function, similar to GLMs.  However, 
instead of assuming a linear relationship, GAMs employ 
smoothing functions, such as splines, regression or wavelets, 
to model nonlinearities and interactions.  Compared to the 
linear predictor of GLM, the GAM model can be described 
as follows: 

0 1 1( ) ( ( ,) )n ng f X f X      

where 0 1, , , , , ng X X    are the values defined in the 

section of Generalized Linear Model, and 1, , nf f  are 

smooth functions [12].  
By allowing for flexible and nonparametric modeling, 

GAMs can handle complex data structures and capture 
intricate relationships between predictors and the response. 

They are particularly useful when dealing with data that 
exhibit nonlinear patterns, such as time series, spatial data, 
and interactions between variables [13]. 

IV. EVALUATION TOOLS 

The three evaluation tools used in this research are 
presented as follows. 

A. Akaike Information Criterion 

In statistics, the Akaike Information Criterion (AIC) is a 
criterion used to select the most appropriate model from a set 
of models, all fitted to the same data but having different 
explanatory parameters. The AIC is a measure of the trade-off 
between model fit and model complexity. It aims to balance 
the goodness of fit of the model with the number of 
parameters used in the model. The AIC score is calculated 
based on the model’s likelihood function and the number of 
parameters used in the model. It is given by the formula 

ˆAIC 2ln 2 ,L p    

where L̂  is the likelihood function of model, and p  is the 

number of parameters in the model. However, in the context 
of parameter estimation using the method of least squares, the 
AIC can be used to compare different models with different 
numbers of parameters. The AIC for this model can be 
calculated using the following formula: 

AIC ln 2 ,
RSS

N p
N
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where N  is the number of data points (sample size), p  is the 

number of parameters in the model, and RSS  is Residual 
Sum of Squares which measures the sum of the squared 
differences between the observed data and the predicted 
values from the model [14]. 

A lower AIC score indicates a better model, as it suggests 
that the model fits the data well while using fewer parameters, 
thus avoiding overfitting. Overfitting occurs when a model is 
too complex and captures noise in the data rather than the 
underlying pattern, leading to poor performance on new, 
unseen data. AIC is commonly used in the analysis of 
regression models and time series models, where different 
combinations of explanatory variables or lagged terms are 
considered. By comparing the AIC scores of various models, 
researchers can identify the model that strikes the best 
balance between accuracy and simplicity, ultimately aiding 
in making informed decisions during model selection. 

B. Root Mean Square Error 

RMSE, which stands for Root Mean Squared Error, 
serves as a metric to evaluate prediction accuracy. It is 

obtained by taking the square root of the average squared 
error. The mean squared error is computed by summing up the 

squared differences between the predicted values and the 
actual values, and then dividing the sum by the number of 
observations. The RMSE formula is 

2
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where x is the observed value, y is the predicted value, and N 
is the number of observations. A smaller RMSE value 
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signifies a more accurate prediction [12]. 

C. DISO 

DISO, or Distance Between Indices of Simulation and 
Observation, serves as a statistical measure that allows for the 
quantification of the disparity between simulated and 
observed data. To calculate DISO, both sets of data are 

normalized to have a mean of zero and a standard deviation 
of one, and then the Euclidean distance between the two sets 
is computed. DISO finds its application in comparing 

different simulation models and assessing the impact of 
parameter modifications on a model. It also helps in 

identifying areas where the model's performance is subpar, 
thus providing valuable insights for further research and 
development endeavors. A low DISO value signifies a close 

resemblance between the model's output and the observed 
data, while a high DISO value indicates a lack of accuracy in 
capturing the underlying process. DISO is defined as follows: 

2 2 2DISO (1 ) NAE NRMSE ,R     

where R is correlation coefficient, NAE and NRMSE are 
normalized absolute error (AE) and RMSE, respectively. Note 

that the formulae of R, NAE and NRMSE are as follows: 
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and  RMSE
NRMSE ,

x
  

where xi represents the observed value, yi represents the 
predicted value, x  and y  represent the means of xi and yi, 

and N is the total number of data points [15]. 

V. METHODOLOGY 

A. Tools 

RStudio was selected as the main software for modeling 
and statistical analysis because of its extensive capabilities 
and wide acceptance. The research used RStudio version 3.6.1 
on a Microsoft Windows 11 Home Single Language, version 
22H2 operating system.  The computations were executed on 
a computer equipped with an Intel(R) I7-12700H CPU. 

B. Data Set 

The dataset is sourced from the National Health Insurance 
Service_Health Checkup Information provided by National 
Health Insurance Corporation (Korea)  and can be accessed at 
https://www.data.go.kr/data/15007122/fileData.do. It was first 
registered on 29 September 2021 and was first published on 
19 December 2022.  Health check-up information pertains to 
the overall health examination outcomes of Korean national 
health insurance employees, dependents aged 40 and above, 
local subscribers who are household heads, and local 
subscribers aged 40 and above.  It also encompasses 
individuals who have attained the ages of 40 and 66, among 
those who are eligible for general health check-ups.  The data 

consists of 22 variables as shown in table 1. It includes a total 
of 55,692 records that are updated yearly. 

C. Model Creation 

In this research, we consider the GLMs and GAMs for Y1 

(cholesterol) and Y2 (triglyceride). First, we assume that Y1 

depends on Y2, x1, x2, …, x20 and Y2 depends on Y1, x1, x2, …, 

x20. Subsequently, the model creations adhere to the provided 

algorithm. 

 
Table 1. Variables in the data set. 

Variable Description 

Y1 cholesterol (total) 

Y2 triglyceride 

X1 age (years, 5-years gap) 

X2 height (cm) 

X3 weight (kg) 

X4 waist (cm) 

X5 eyesight (left) 

X6 eyesight (right) 

X7 hearing (left) 

X8 hearing (right) 

X9 systolic (blood pressure) 

X10 relaxation (blood pressure) 

X11 fasting blood sugar 

X12 HDL (High-density Lipoprotein) 

X13 LDL (Low-density Lipoprotein) 
X14 hemoglobin 

X15 urine protein 

X16 serum creatinine 

X17 AST (Aspartate transaminase) 

X18 ALT (Alanine transaminase) 

X19 GGTP  

X20 dental caries 
 

Model Creation Algorithm 

1. Importing Data. 
2. Selecting a statistical distribution for model creation. 
3. Creating the model (using GLM or GAM). 
4. Performing feature selection using variable selection 

methods. 
5. Applying the model obtained in step 4. to the test data 

for the prediction. 
6. Evaluating performance. 
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VI. RESEARCH RESULTS 

A. Evaluation of the Models for Predicting Cholesterol 

Table 2.  Results of the performance evaluation of the GLM 
models for predicting cholesterol. 

Distribution AIC RMSE DISO 

Normal 347705.3 16.00829 0.1070061 
gamma 275727.2 19.96705 0.4578677 

inverse-Gaussian 319671.9 16.53430 0.5317749 

Tweedie 271367.8 29.70599 1.6851250 
 

Table 3.  Results of the performance evaluation of the GAM 
models for predicting cholesterol. 

Distribution AIC RMSE DISO 

Normal 230529.0 3.650386 0.01387663 
gamma 306760.2 4.355414 0.01731654 

inverse-Gaussian 239933.4 4.682186 0.01977855 

Tweedie 242879.0 6.221848 0.02663219 

B. Evaluation of the Models for Predicting Triglyceride 

Table 4.  Results of the performance evaluation of the GLM 
models for predicting triglyceride. 

Distribution AIC RMSE DISO 

Normal 419560.9 49.91192 0.7328266 
gamma 419536.1 63.69959 0.9537604 

inverse-Gaussian 419758.6 66.26119 0.9768965 

Tweedie 418488.8 110.3757 1.0656720 

Table 5.  Results of the performance evaluation of the GAM 
models for predicting triglyceride. 

Distribution AIC RMSE DISO 

Normal 350369.8 18.73588 0.1844699 
gamma 419536.1 61.50394 0.9224283 

inverse-Gaussian 416590.5 63.24360 0.9758391 

Tweedie 416518.2 61.23025 0.9209138 

 
Based on Tables 2 to 5, they show that GAMs provide overall 
better performing models than GLMs. Considering RMSE 

and DISO, both types of models yield the best results for the 
normal distribution. The models obtained using GLM and 

GAM techniques for the normal distribution are presented in 
Tables 6 to 9. 

C. GLMs and GAMs Obtained by Using the Normal 
Distribution 

Table 6. The coefficients of GLM in constructing a predictive 

model for cholesterol (using the Normal distribution). 

Coeff Est Std. Err. t val. Pr(>|t|) 

Intercept 79.410295 2.929922 27.103 < 2e-16 

Y2 0.190650 0.001767 107.888 < 2e-16 

X1 0.057512 0.010598 5.427 5.77e-08 

Coeff Est Std. Err. t val. Pr(>|t|) 

X2 -0.290947 0.017919 -16.237 < 2e-16 

X3 0.154368 0.012734 12.123 < 2e-16 

X9 -0.083214 0.012256 -6.790 1.14e-11 

X10 0.127845 0.017124 7.466 8.46e-14 

X11 -0.051593 0.005469 -9.434 < 2e-16 

X12 0.935035 0.008429 110.928 < 2e-16 

X13 0.602160 0.002499 240.932 < 2e-16 

X14 0.787507 0.085317 9.230 < 2e-16 

X17 -0.020446 0.007986 -2.560 0.010461 

X18 0.016865 0.004910 3.435 0.000594 

X19 -0.007051 0.002477 -2.847 0.004414 

Remark: The coefficient parameters of X4, X5, X6, X7, X8, X15, 

X16, and X20 in the GLM proposed in Table 6 have been 

discarded in the feature selection process, indicating that 
these variables are not significant for the model. 

 
Table 7. The Anova for Parametric Effects of GAM in 

constructing a predictive model for cholesterol (using the 

Normal distribution). 

( )f   

Function of 

Sum and 
Mean Sq. F val. Pr(>F) 

Y2 2,923,557 1.3522e+05 < 2.2e-16 

X1 83,105 3.8439e+03 < 2.2e-16 

X2 126,944 5.8716e+03 < 2.2e-16 

X3 229,621 1.0621e+04 < 2.2e-16 

X4 12,882 5.9582e+02 < 2.2e-16 

X5 1,725 7.9808e+01 < 2.2e-16 

X6 248 1.1483e+01 0.0007031 

X9 74,472 3.4446e+03 < 2.2e-16 

X10 148,720 6.8788e+03 < 2.2e-16 

X11 1,816 8.3981e+01 < 2.2e-16 

X12 5,040,221 2.3313e+05 < 2.2e-16 

X13 26,259,130 1.2146e+06 < 2.2e-16 

X14 83 3.8488e+00 0.0497897 

X15 95 4.4021e+00 0.0359017 

X16 13 5.8130e-01 0.4457965 

X17 9 3.9370e-01 0.5303631 

X18 6 2.9190e-01 0.5890280 

X19 10 4.4580e-01 0.5043250 

Remark: The parameters X7, X8, and X20 in the GAM 

proposed in Table 7 have been discarded during the feature 
selection process, indicating that they are not significant for 
the model. 
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Table 8. The coefficients of GLM in constructing a predictive 

model for triglyceride (using the Normal distribution). 

Coeff Est Std. Err. t val. Pr(>|t|) 
Intercept -29.349710 8.209824  -3.575 0.000351 

Y1 1.204597 0.011168 107.860  < 2e-16 

X2 -0.109595 0.047531  -2.306 0.021129 

X3 0.117862 0.051194   2.302 0.021326 

X4 0.458089 0.057983   7.900 2.85e-15 

X5 1.295903 0.541842   2.392 0.016777 

X9 0.118274 0.030543   3.872 0.000108 

X10 0.259282 0.043023   6.027 1.69e-09 

X11 0.328004 0.013495  24.305  < 2e-16 

X12 -2.344657 0.021223 110.480  < 2e-16 

X13 -0.743345 0.009171 -81.058  < 2e-16 

X14 2.691483 0.217812  12.357  < 2e-16 

X16 -3.603069 1.341515  -2.686 0.007238 

X17 -0.155830 0.020002  -7.791 6.82e-15 

X18 0.051627 0.012307   4.195 2.73e-05 

X19 0.251567 0.006110  41.174  < 2e-16 

Remark: The coefficient parameters of X1, X6, X7, X8, X15, and 

X20 in the GLM proposed in Table 8 have been discarded in 
the feature selection process, indicating that these variables 
are not significant for the model. 

 
Table 9. The Anova for Parametric Effects of GAM in 

constructing a predictive model for triglyceride (using the 

Normal distribution). 

( )f   

Function of 

Sum and 
Mean Sq. F val. Pr(>F) 

Y1 136,584,895 2.9206e+05 < 2.2e-16 

X1    460,637 9.8499e+02 < 2.2e-16 

X2   4,865,888 1.0405e+04 < 2.2e-16 

X3  27,687,582 5.9205e+04 < 2.2e-16 

X4   2,432,383 5.2012e+03 < 2.2e-16 

X5     40,033 8.5604e+01 < 2.2e-16 

X6      8,796 1.8809e+01 1.448e-05 

X9    723,778 1.5477e+03 < 2.2e-16 

X10   2,371,565 5.0712e+03 < 2.2e-16 

X11   1,598,055 3.4172e+03 < 2.2e-16 

X12  53,279,944 1.1393e+05 < 2.2e-16 

X13 202,500,607 4.3301e+05 < 2.2e-16 

X14     40,658 8.6940e+01 < 2.2e-16 

X15      4,405 9.4204e+00  0.002147 

X16      1,632 3.4896e+00  0.061761 

X17     16,436 3.5146e+01 3.084e-09 

X18      2,059 4.4036e+00  0.035870 

X19    382,813 8.1858e+02 < 2.2e-16 

Remark: The parameters of X7, X8, and X20 in the GAM 

proposed in Table 9 have been discarded during the feature 
selection process, indicating that they are not significant for 
the model. 

D. Explanation of Acquired GLMs and GAMs 

As proposed in Table 6-9, some features of the GLMs and 
the GAMs, have been discarded during the feature selection 
process. This suggests that these features are not significant 
for the models. In Tables 6 and 8, the “Est” (Estimate) signifies 
the coefficient value of the predictor variables, “Std. Err.” 

(Standard Error) quantifies the variability of the coefficient 
estimate, “t val” (t-value) indicates the number of standard 
errors the coefficient estimate deviates from zero, and 
“Pr(>|t|)” (p-value) represents the probability linked with 
observing a t-value. Consequently, the absolute t-values of all 
predictors are noticeably distant from zero, suggesting a 
possibly pronounced impact of the predictors. Furthermore, p-

values less than 0.05 affirm the statistical significance of the 
coefficients. Table 6 reveals that AST holds the lowest level 
of significance among the features considered in the GLM of 
the predictive cholesterol model. Similarly, Table 8 
demonstrates that height, weight, and eyesight (left) are the 
three least significant features in GLM of the predictive 
model for triglyceride levels. 

Within the framework of the GAM model structure, the 
ANOVA technique was harnessed to scrutinize the model. 

Within Tables 7 and 9, the terms “Sum and Mean Sq” portray 
the accumulation of squared disparities between observed 
values and the overall mean, while also reflecting the mean 
of these squared differences. These statistics are instrumental 
in evaluating the model's variance components. “F val” (F 
value) serves to scrutinize whether the means of diverse 
groups exhibit significant dissimilarity. Furthermore, “Pr(>F)” 

(p-value) signifies the likelihood of encountering the 
computed F value when the assumption of insignificant 
variance between group means holds true. These parameters 
collectively gauge the significance of the comprehensive 
model and the effects of individual factors within it. The 
observed Pr(>F) values, akin to Pr(>|t|), validate the statistical 
significance of these predictors. In Table 7, it is evident that 
the features serum creatinine, AST, ALT, and GTP do not 
hold statistical significance, while hemoglobin and urine 
protein are of lesser significance within the context of the 
GAM for predicting cholesterol levels. Furthermore, Table 9 
highlights that serum creatinine lacks statistical significance, 
while ALT is of lesser significance in the GAM of the 
predictive model for triglyceride levels. 

VII. CONCLUSION 

By the aforementioned data, it is evident that applying the 
normal distribution in constructing predictive models for 
cholesterol and triglyceride using the statistical techniques of 
GLM and GAM yields more efficient models compared to 
other statistical distributions, gamma distribution, inverse-

Gaussian distribution, and Tweedie distribution.  The ability 
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of hearing and dental caries status does not affect the 
development of models for predicting cholesterol and 
triglyceride levels.  In addition to the mentioned explanatory 
variables, GAMs utilize all the remaining variables, whereas 
GLMs use fewer explanatory variables.  In general, GAMs 
perform better in model creation compared to GLMs.  Based 
on the data provided, it is apparent that the relationships 
between the two response variables ( cholesterol and 
triglyceride)  and the explanatory variables are nonlinear. 

Additionally, the data demonstrates a statistically normal 
distribution.  Although GAMs have the capability to create 
superior forecasting models, interpreting the results from the 
smoothing functions of each explanatory variable proves to 
be challenging.  However, it is still possible to observe the 
significant impact of the explanatory variables on both 
response variables. 
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