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Abstract— A mathematical model for images with speckle 

noise has been developed. To verify the model, sample 

images were first overlaid with noise and then de-noised by 

the obtained process. The reconstructed images were 

analyzed.  

Development of the model started with the observation 

that speckle noise is related with the Rayleigh distribution. 

Hence the image intensity can be described by a Rayleigh 

random variable. The maximum probability of the observed 

images on the condition of the noiseless image was required. 

This led to the formulation of a discrete model, which can be 

considered as the approximation of an integral model. By the 

variational approach, the problem of minimizing the integral 

model was transformed to a simpler one, i.e. finding the 

solution of an Euler-Langrange equation. In theory, the 

solution of the equation should provide the noiseless 

reconstructed image 

For the purpose of verification, a pattern image and the 
Lenna image were used as sample images. Speckle noise with 

variance 0.02 was added to the original images by MATLAB 

software. The correlation coefficients of the original images 
and the noisy images were compared with the correlation 

coefficients of the original images and the reconstructed 

images. For the pattern image, the correlation coefficient of 

the original image and the noisy image was 0.9678 and the 

correlation coefficient of the original image and the 

reconstructed images with 200, 250, 300 and 350 iterative 

loops were 0.9963, 0.9974, 0.9980 and 0.9982 respectively. 

For the Lenna image, the correlation coefficient of the 

original image and the noisy image was 0.9444 and the 

correlation coefficient of the original image and the 

reconstructed images with 200, 250, 300 and 350 iterative 

loops were 0.9730, 0.9804, 0.9848 and 0.9871 respectively. 

The results show that the model can used to remove noise 

from an ultrasound image. 
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I. INTRODUCTION 

Ultrasound images provide low cost, non-invasive and 

real-time images which can help clinicians in diagnosis and 

therapy. However, the ultrasonic wave encounters rough 

surfaces which results in scattering and leads to noise 

speckle noise. Thus denoising model are an important topic 

in image processing research. [1] shows the comparison of 

speckle filters in radar images dealing with the minimum 

mean square error model. The main disadvantage of those 

filters is that we have to know the information of the noise 
a-priori in the computation. Difficulties arise when we work 

with an ultrasound video because we do not have the 

speckle noise information. 

This problem can be solved by a mathematical model 

called the variational approach. The representation of the 

image in several variational models is given by the additive 

noise model, ( , ) ( , ) ( , )u x y u x y n x y  , or  the multiplicative 

noise model, ( , ) ( , ) ( , )u x y n x y u x y , where ( , )u x y  is the 

intensity of the desired image at coordinate ( , )x y , ( , )u x y  is 

the intensity of the observed image at coordinate ( , )x y  and 

( , )n x y  is the intensity of noise at coordinate ( , )x y . The 

variational approach is used for finding the desired image u  

from the noisy image u . 

There are several studies of digital image denoising 
models dealing with the variational approach, for example : 

1. The ROF model [2] 

In 1992, Rudin, Osher, and Fatemi presented a 

mathematical denoising model called the ROF model, 

which uses the additive noise model and is based on 

calculus of variations. 

2. The variatonal approach for Poisson noise [3] 

In 2007, Le, Chatrand and Asaki adapted the ROF model to 

present the data-fidelity term of the model which is suitable 

for Poisson noise. 

3. A variational approach to remove multiplicative 

noise [4] 
In 2008, Aubert and Aujol focused on the problem of 

multiplicative speckle noise removal.  

Green [5] presented statistical description of the ROF 

model [2] which deals with the Gaussian noise. On the other 

hand, Le et al. [3] draw their inspiration from the modeling 

of Poisson noise. However a model for speckle noise 

reduction in ultrasound images is still needed. 

In this research, a variational approach adapted from the 

ROF model is used to construct a model to reduce the 

speckle noise in the ultrasound image. Different from [3,4], 

we describe the image intensity of the ultrasound image by 
Rayleigh distribution and apply the variational approach to 

the additive noise model. 

The model takes the form of an integral, and calculus of 

variations leads to the problem of an Euler-Lagrange partial 

differential equation. The solution of this equation is 

approximated by the gradient descent method. The pattern 

image and the Lenna image are used to evaluate the 

proposed model by comparing the correlation coefficient of 

the noisy images and the reconstructed images to the 

original ones. It is found that the model can be used to 
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denoise noisy images and ultrasound videos. The 

description of the results is shown in this article.  

II. MATHEMATICAL BACKGROUND AND METHODS 

A. Speckle Noise and Rayleigh Distribution 

The Rayleigh distribution is a continuous probability 

distribution. It arises when a two-dimensional vector has 
elements that are normally distributed random variables, are 

independent and both have zero mean and equal variance. 

The vector's magnitude will then have a Rayleigh 

distribution [6]. It density function is known as the Rayleigh 

density function 
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is the corresponding Rayleigh distribution, and   is its 

variance.  
Speckle is a random pattern which has a negative impact 

on coherent imaging, including ultrasound imaging. It is the 

result of the superposition of many waves, which have 

different or incoherent phases [7]. Speckle occurs in an 

ultrasound image because the ultrasonic wave encounters 
rough surfaces that result in the scattering of waves, each 

scattered wave from a rough surface has a different phase 

which leads to the forming of speckles. The amplitude of 

the harmonic wave corresponding to the intensity of the 

image at each point has a Rayleigh distribution. Here the 

amplitude is considered as a Rayleigh random variable. 

B. Calculus of Variations 

Calculus of Variations is a field of mathematics that 
deals with functionals. Such functionals can be formed as 

integrals involving an unknown function and its derivatives. 

The interest is in extremal functions making the functional 

attain an extremum value. For example, the problem 

involves finding the extrema of integrals of the form 

( , , , , )x yF x y u u u dxdy  

over a bounded region  , where F  is uniformly 

continuous on  . By calculus of variations, the solution of 

this problem is equivalent to the solution of the equation 

 0,
x yu u uF F F

x y

 
  

 
 

which is called the Euler-Lagrange differential equation.  

 

 

C. Description of the Proposed Model 

Assume that u  is a given noisy ultrasound image 

defined on  , a bounded open rectangle in 2  with 

piecewise Lipschitz boundary  . We assume u  is 

bounded and positive on   and ,x yu  is the intensity of u  at 

the location ( , )x y .  Note that u  is assumed to be noiseless 

on  . Let 
,x yU be a random variable on the set of noiseless 

images, which corresponds to noiseless image intensity at 

point ( , )x y  and ,x yU  be a random variable on the set of 

observed images, which corresponds to observed image 

intensity at point ( , )x y . We wish to determine the image u  

which is most likely to the given observed image u . 

From the statistical point of view, we are going to find 

an image u  which maximizes the conditional probability 

that the intensity of a noiseless image is most likely to the 

intensity of the given observed image for all ( , )x y  We 

assume that   is pixelated by {( , ) | , 0, , 1}x y x y N      

and the values of image intensity for each pixel ( , )x y  are 

independent, thus the conditional probability mentioned is 
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where, at point ( , )x y ,  , , , ,|  x y x y x y x yP U u U u   is the 

conditional probability of the intensity of the noiseless 

image u  on the condition of the intensity of the observed 

image u ,  , , , ,|x y x y x y x yP U u U u   is the conditional 

probability of the intensity of the observed  image  u  on the 

condition of the intensity of  the noiseless image u , 

, ,( )x y x yP U u  is the probability of intensity of the noiseless 

image and   , ,x y x yP U u  is the probability of intensity  of 

the observed image u . In order to maximize 

 , , , ,|  x y x y x y x yP U u U u  , we are going to find the noiseless 

image u  which maximizes  
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For each ( , )x y , u  is a Rayleigh random variable and its 

probability density is  
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Assume the parameter   of the conditional probability of u  

on the condition of the noiseless image u  is a function of u , 

( )u  . Expression (1) becomes  
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In logarithm form, the problem of maximizing expression 

(2) is equivalent to the problem of minimizing 
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We regard it as a discrete approximation of the functional 
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where ( )P u  is the probability that the random variable 
,x yU   

is equal to the intensity of the noiseless image u  at pixel 

( , )x y  for all ( , )x y  . For the model of a variational 

approach, Green [5] presents that ( )P u  is given by 
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where   is a parameter. Hence, functional ( )E u  becomes 
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The Euler-Lagrange equation for minimizing ( )E u  is 
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Since the last term of this equation is a data-fidelity term 

[3], it vanishes when u u :  
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satisfying this requirement. The functional ( )E u  obtained is  
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The Euler-Lagrange equation for minimizing ( )E u  is 
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where u u  on  .  

D. Numerical Results 

To verify the theoretical part, we use some images in our 

experiments. The correlation coefficients of the original 

images and the noisy images are compared with the 

correlation coefficients of the original images and the 

reconstructed images.  

First, speckle noise with 0.02 variance is added to the 

original pattern image by MATLAB software version 7.2. 

Correlation coefficients of the original image and the noisy 

image is 0.9678 while correlation coefficients of the 
original image and reconstructed images with respective to 

the number of iterative loops are shown in Table 1. They are 

higher than 0.9678. 

 

Table 1 Correlation coefficients of reconstructed pattern images 

Iterative 

Loops 

ROF 

Model 

Model by 

Le et al. 

Model by Aubert 

and Aujol 

Proposed 

model 

0 

200 

250 

300 

350 

0.9678 

0.9882 

0.9889 

0.9893 

0.9895 

0.9678 

0.9960 

0.9971 

0.9978 

0.9981 

0.9678 

0.9963 

0.9974 

0.9980 

0.9982 

0.9678 

0.9963 

0.9974 

0.9980 

0.9982 

  

(a) Original Pattern image (b) Speckle noisy pattern image. 

  

(c) Image reconstructed by (d) Image reconstructed by 

 ROF model (200 loops)   Le et al. model (200 loops) 

  

(e) Image reconstructed by (f) Image reconstructed by 

 Aubert and Aujol model          the proposed model (200 loops) 

 (200 loops) 

Fig 1 Original pattern image, Speckle noisy pattern image, and images 

reconstructed by a variety of methods for 200 loops 

 

Furthermore, we use the Lenna image which is a well-

known image in the field of image processing in our 

experiment. Speckle noise with 0.02 variance is added in 

the original image by MATLAB software. Similarly, 

correlation coefficients are compared and they are shown in 
Table 2. The correlation coefficient of the original image 

and noisy image is 0.9444 while the correlation coefficients 

of the original image and reconstructed images are all 

higher. 
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Table 2 Correlation coefficients of reconstructed Lenna images 

Iterative 

Loops 

ROF 

Model 

Model by 

Le et al. 

Model by Aubert 

and Aujol 

Proposed 

model 

0 

80 

120 

160 

200 

0.9444 

0.9663 

0.9704 

0.9728 

0.9743 

0.9444 

0.9725 

0.9798 

0.9843 

0.9868 

0.9444 

0.9730 

0.9804 

0.9848 

0.9870 

0.9444 

0.9730 

0.9804 

0.9848 

0.9871 

  

(a) Original Lenna image (b) Speckle noisy Lenna image. 

  

(c) Image reconstructed by (d) Image reconstructed by 

 ROF model (100 loops)   Le et al. model (100 loops) 

  

(e) Image reconstructed by (f) Image reconstructed by 

  Aubert and Aujol model (100 loops)         the proposed model (100 loops) 

Fig 2 Original Lenna image, Speckle noisy Lenna image, and images 

reconstructed by a variety of methods for 100 loops 

The output of the prototype software shows that after 

enhancing the ultrasound image, one obtains a smoother 

image as presented in figure 3. 

 

 

 (a) Original ultrasound image   (Provided by Dr.Chumrus Sakulpaisarn) 

 

(b) Ultrasound image reconstructed by the proposed model (100 loops) 

Fig 3 Ultrasound image and the image reconstructed by the proposed 

method (100 loops) 

The results show that the correlation coefficients of the 

original images and the reconstructed images are closer to 
1 than those of the original and the noisy images. This 

establishes experimentally the validity of our model. 

III. CONCLUSIONS 

A mathematical model for noise removal in ultrasound 

images has been developed, which helps for enhancing 

ultrasound images with speckle noise. Numerical tests 
have shown that such images can be denoised with good 

success by employing this model. The application of this 

theory to computer software will support clinicians in 

diagnosis of digital ultrasound images. 
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