103625 APPLIED ANALYSIS

JESSADA TANTHANUCH
School of Mathematics
Institute of Science
Suranaree University of Technology

Contents

1 Groups, Rings and Fields 1
1.1 Binary operation 1
1.2 Groups and Elementary Properties 5
1.3 Symmetric group 9
1.4 Subgroups 12
1.5 Cyclic Group and Elementary Properties 18
1.6 Cosets 20
1.7 Homomorphisms and Isomorphisms 24
1.8 Rings 26
1.9 Fields and Ordered Fields 29
2 Real numbers 33
2.1 Real numbers 33
2.1.1 Geometric Motivation 33
2.1.2 Upper and Lower Bound 35
2.2 Cardinality 47
2.3 Intervals 53
3 Sequences and Series 59
3.1 Sequences 59
3.1.1 Absolute Values 59
3.1.2 Sequences 61
3.1.3 Monotonicity 62
3.2 Subsequences 67
3.3 Null sequences 69
3.4 Convergent sequences 76
3.5 Cauchy Sequences 86
3.6 Divergence to Infinity 92
3.6.1 Positive Infinity 92
3.6.2 Negative Infinity 93
3.6.3 The Bolzano-Weierstrass Theorem 103
$4 \quad$ Limit and Continuity 107
4.1 Cluster Points and Isolated Points 107
4.2 Some Topological Concepts 113

List of Figures

2.1 Line segment with length 1 33
2.2 Line segment with length 1 divided into n pieces of equal length. 34
$2.3 m \frac{1}{n}$-pieces past together. 34
2.4 Figure of a righted-triangle which has the length of sides 1,1 and x. 35
2.5 Figure to show an idea of Archimedian property. 43
3.1 When $n>N,\left|s_{n}\right|<\varepsilon$ 70
3.2 Null sequence 76
3.3 Convergent sequence 76
4.1 Deleted ε-Neighborhood $N_{\varepsilon}^{*}(a)$ is contained in S. 107

Chapter 1

Groups, Rings and Fields

1.1 Binary operation

Let S be a set. A mapping \circ,

$$
\circ: S \times S \mapsto S
$$

is called a binary operation (of S into itself). If x, y are elements of S, the image of the pair (x, y) under the operation \circ is sometimes called the product under the binary operation.

Remark

1. $\circ(a, b)$ has to be defined for any ordered pair $(a, b) \in S \times S$ and $\circ(a, b)$ is well defined.
2. $\circ(a, b) \in S$ for all $a, b \in S$.

For this property, we say that S is closed under o. For the sake of simplicity, we may denote $\circ(a, b)$ by $a \circ b$ or sometimes $a b$.

Example 1.1. Let $\mathfrak{F}=\{f \mid f: \mathbb{R} \mapsto \mathbb{R}\}$. Define \circ on \mathfrak{F} by $f \circ g=\circ(f, g)=h$ where $h(x)=f(x)+g(x)$ for any $f, g \in \mathfrak{F}$ and $x \in \mathbb{R}$. It is obvious that \circ is a binary operation on \mathfrak{F}.

Example 1.2. Let \circ be defined on a set of integer numbers \mathbb{Z} by $a \circ b=\frac{a}{b}$. We can see that o is not closed under \mathbb{Z}.

Example 1.3. Let \circ be defined on a set of rational numbers \mathbb{Q} (or a quotient set $\mathbb{Q})$ by $a \circ b=\frac{a}{b}$.
Question : Is " \circ " a binary operation on \mathbb{Q} ?
Answer : No, it is not. Since "०" is not defined for $(3,0)$.
Remark (3,0) is just a counter example. There are many examples to show that - is not defined for some ordered pairs, i.e. $(0,0),(0.5,0),(1,0),(-2,0), \ldots$

Example 1.4. Let \circ be defined on a quotient set \mathbb{Q} by $a \circ b=c$, where c is an rational number which is greater than both a and b. Since there are many elements which are greater than a and $b^{\mathbb{1}}$, the definition gives an ambiguous result. ○ is not well defined.

Definition 1.1. Let o be a binary operation on a set S.

- \circ has an associative property if

$$
(a \circ b) \circ c=a \circ(b \circ c), \quad \forall a, b, c \in S
$$

- ○ has a commutative property if

$$
a \circ b=b \circ a \quad \forall a, b \in S
$$

Example 1.5. Consider the additive operation " + " and multiplicative operation ".". They are binary operations on the set of real numbers \mathbb{R} which have associative and commutative properties, i.e.

$$
\begin{array}{lll}
a+(b+c)=(a+b)+c & \text { and } & a+b=b+a, \\
\text { also } \quad a \cdot(b \cdot c)=(a \cdot b) \cdot c & \text { and } & a \cdot b=b \cdot a \quad \forall a, b, c \in \mathbb{R} .
\end{array}
$$

[^0]Example 1.6. Define $\min (a, b)=\left\{\begin{array}{ll}a & \text { if } a \leq b, \\ b & \text { if } a>b\end{array}\right.$. Let \odot be defined on a set of positive integers \mathbb{Z}^{+}by

$$
a \odot b=\min (a, b)+2, \quad \forall a, b \in \mathbb{Z}^{+}
$$

It is easy to see that \odot is a binary operation on \mathbb{Z}^{+}. Further more, \odot has a commutative property but has no property of associativity, i.e

- $a \odot b=\min (a, b)+2 \quad$ and $\quad b \odot a=\min (b, a)+2$.

Thus $a \odot b=b \odot a$ for all $a, b \in \mathbb{Z}^{+}$.

- However

$$
\begin{aligned}
(1 \odot 2) \odot 3 & =[\min (1,2)+2] \odot 3 \\
& =(1+2) \odot 3 \\
& =3 \odot 3 \\
& =\min (3,3)+2 \\
& =3+2=5 \\
\text { and } \quad 1 \odot(2 \odot 3) & =1 \odot[\min (2,3)+2] \\
& =1 \odot(2+2) \\
& =1 \odot 4 \\
& =\min (1,4)+2 \\
& =1+2=3 .
\end{aligned}
$$

This shows that $(a \odot b) \odot c \neq a \odot(b \odot c)$ for some $a, b, c \in \mathbb{Z}^{+}$.

Example 1.7. Let \triangle be defined on \mathbb{Z}^{+}by $a \triangle b=b$ for all $a, b \in \mathbb{Z}^{+} . \triangle$ is a binary operation with associative property :
for $a, b, c \in \mathbb{Z}^{+}$

$$
\begin{aligned}
& a \triangle(b \triangle c)=a \triangle c=c \\
& (a \triangle b) \triangle c=b \triangle c=c
\end{aligned}
$$

So $a \triangle(b \triangle c)=(a \triangle b) \Delta c$ for $a, b, c \in \mathbb{Z}^{+}$. However, \triangle is not commute :

$$
3 \triangle 11=11 \quad \text { but } \quad 11 \triangle 3=3
$$

Example 1.8. Let \star be defined on a set of integers \mathbb{Z} by $a \star b=a^{2}-b^{2}$ for all $a, b \in \mathbb{Z} . \star$ is a binary operation which has no either associative and commutative properties :

$$
\begin{aligned}
& 4 \star(3 \star 2)=4 \star\left(3^{2}-2^{2}\right)=4 \star 5 \\
& =4^{2}-5^{2}=-9 \\
& \text { while } \\
& (4 \star 3) \star 2=\left(4^{2}-3^{2}\right) \star 2=7 \star 2 \\
& =7^{2}-2^{2}=45
\end{aligned}
$$

also

$$
1 \star 2=1^{2}-2^{2}=-3 \neq 3=2^{2}-1^{1}=2 \star 1
$$

EXERCISE

Consider whether the following operations on the given sets are binary operations or not. If they are determine whether they have properties of associative and commutative or not.

1. $a \circ b=a-b \quad$ on \mathbb{Z}^{+}
2. $a \circ b=a-b \quad$ on \mathbb{Z}
3. $a \circ b=2^{a b} \quad$ on \mathbb{Z}^{+}
4. $a \circ b=\sqrt{|a b|}$ on \mathbb{Q}
5. $a \circ b=a \ln b \quad$ on a set of positive real numbers \mathbb{R}^{+}
6. $a \circ b=a+b \quad$ on $S=\{-3,-2,-1,0,1,2,3\}$

1.2 Groups and Elementary Properties

Definition 1.2. (G, \circ) is a group if G is not an empty set and \circ is a binary operation on G which has the following properties :

1. o has an associative property, i.e.

$$
a \circ(b \circ c)=(a \circ b) \circ c, \quad \forall a, b, c \in G
$$

2. There exists $e \in G$ such that

$$
a \circ e=e \circ a=a, \quad \forall a \in G .
$$

We call " e " an identity element of G under o.
3. For any element $a \in G$, there must be $b \in G$ such that

$$
a \circ b=b \circ a=e
$$

We call " b " an inverse element of a. For the sake of convenience, we always denote an inverse element of a by a^{-1}.

Remark

- Group G is composed by 2 important parts which are set G and binary operation \circ. For the official notation, we denote group by (G, \circ). However, for the sake of convenience, " G is a group." will be briefly denoted in stead of " (G, \circ) is a group." Also $a b$ will be used to mean $a \circ b$. Anyways (G, \circ) may be sometimes used to emphasize the use of the operation \circ on G.
- Some textbooks may say that a group must satisfy four properties, i.e. the three previous properties including " G is closed under the binary operation o". Actually, our context has considered that as a property of the binary operation.
- By the second property of group, we can say that group must consist of an identity. Thus we find that the smallest group is a set with has only one member $\{e\}$, where the binary operation is defined by $e \circ e=e$. In this case, we can see that e is an inverse of itself. Then set $\{e\}$ satisfies all properties of group.
- The inverse of an identity is itself.

Moreover, o may not satisfy all three group properties. If \circ is just a binary operation on G, we call (G, \circ) a groupoid. In the case that o satisfies only the first property (associative property), we call (G, \circ) a semigroup. Also if o satisfies the first and second (identity) property, we call (G, \circ) a monoid.

Example 1.9. The following groups are often used :

- $(\mathbb{Z},+)$
" 0 " is an identity of this group. For $a \in \mathbb{Z}$, its inverse is $-a$.
- $\left(\mathbb{Z}_{n},+\right)$
$\mathbb{Z}_{n}=\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$ is a set of remainders obtained by the division of integers by n, for $n=2,3, \ldots$. The identity of this group is $\overline{0}$. The inverse of \bar{a} is $\overline{n-a}$.
$-\mathbb{Z}_{2}=\{\overline{0}, \overline{1}\}$
The inverse of $\overline{1}$ is $\overline{1}$, i.e. $\overline{1}+\overline{1}=\overline{1+1}=\overline{2}=\overline{0}$.
$-\mathbb{Z}_{3}=\{\overline{0}, \overline{1}, \overline{2}\}$
The inverse of $\overline{1}$ is $\overline{2}$ and vice versa, i.e. $\overline{1}+\overline{2}=\overline{1+2}=\overline{3}=\overline{0}$.
$-\mathbb{Z}_{4}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$
The inverse of $\overline{1}$ is $\overline{3}$ and vice versa. The inverse of $\overline{2}$ is itself.
- $\left(\mathbb{U}_{n}, \cdot\right)$
$\mathbb{U}_{n}=\{\bar{i}\}$ is a set of remainders obtained by the division of positive integers by n and those remainders are relatively prime to n (i is relatively prime to n means GCD of i and n is equal to 1). The identity of this group is $\overline{1}$. The inverse of \bar{a} is \bar{b} such that $\overline{a b}=\overline{1}$.
- $\left(\mathbb{Q}^{*}, \cdot\right)$ where $\mathbb{Q}^{*}=\mathbb{Q} \backslash\{0\}$ and \cdot is a multiplicative operation. " 1 " is an identity of this group. For $a \in \mathbb{Q}^{*}$, its inverse is $\frac{1}{a}$.
- $(\mathbb{Q},+)$
- $(\mathbb{R},+)$
- $\left(\mathbb{R}^{*}, \cdot\right)$ where $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ and \cdot is a multiplicative operation.
- ($\mathfrak{F}, \circ)$ where $\mathfrak{F}=\{f \mid f: S \underset{\text { onto }}{\stackrel{1-1}{\longrightarrow}} S\}$ and \circ is a composition operation.
- $\left(\mathcal{M}_{m \times n},+\right)$ where $\mathcal{M}_{m \times n}$ is a set of $m \times n$ matrices.

The identity of this group is a zero $m \times n$ matrix $0=\left[\begin{array}{cccc}0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 0\end{array}\right]$. For $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$, its inverse is $-A=\left[\begin{array}{cccc}-a_{11} & -a_{12} & \cdots & -a_{1 n} \\ -a_{21} & -a_{22} & \cdots & -a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{m 1} & -a_{m 2} & \cdots & -a_{m n}\end{array}\right]$

- $\left(\mathcal{M}_{n \times n}, \times\right)$ where $\mathcal{M}_{n \times n}$ is a set of nonsingular $n \times n$ matrices.

The identity of this group is an identity $n \times n$ matrix $I=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1\end{array}\right]$.

The inverse of matrix A is $A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cccc}c_{11} & c_{12} & \cdots & c_{1 n} \\ c_{21} & c_{22} & \cdots & c_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n 1} & c_{n 2} & \cdots & c_{n n}\end{array}\right]$, where $c_{i j}$ is a cofactor.

Definition 1.3. Group (G, \circ) is an abelean group (or a commutative group) if

$$
a b=b a \quad \forall a, b \in G .
$$

Theorem 1.1. Let G be a group. G must satisfy the following properties :

1. G has a unique identity. (Exercise 3.)
2. For each $a \in G$, a has a unique inverse. (Exercise 4.)

Theorem 1.2 (The rule of cancellation). Let G be a group. Any $a, b, c \in G$ must satisfy the following properties :

1. If $a b=a c$ then $b=c$ (Left cancelation.). (Exercise 7a.)
2. If $b a=c a$ then $b=c$. (Right cancelation.) (Exercise 7b.)

EXERCISE

1. Let $\mathfrak{F}=\{f \mid f: S \underset{\text { onto }}{\stackrel{1-1}{\longrightarrow}} S\}$. Show that (\mathfrak{F}, \circ) is a group where \circ is a composition operation.
2. Let G be a group and $a \in G$. Show that if $a^{2}=a \circ a=a$, it implies that a is an identity.
3. Show that if G is a group. G has only one identity.
4. Let G be a group. Show that for any $a \in G, a$ has only one inverse.
5. Let G be a group and $a, b \in G$. Apply exercise 4. to show that $(a b)^{-1}=$ $b^{-1} a^{-1}$
6. Let G be a group and $a \in G$. Show that $\left(a^{-1}\right)^{-1}=a$
7. Let G be a group and $a, b, c \in G$. Show that
(a) If $a b=a c$ then $b=c$. (Left cancelation.)
(b) If $b a=c a$ then $b=c$. (Right cancelation.)
8. Let G be a group and $a, b \in G$. Show that
(a) There exists a unique $x \in G$ such that $a x=b$
(b) There exists a unique $y \in G$ such that $y a=b$
9. Let G be a group such that any element in G is an inverse of itself. Show that G is an abelean group.
10. Let G be a group such that $(a b)^{2}=a^{2} b^{2}$ for $a, b \in G$. Show that G is abelean.

1.3 Symmetric group

Definition 1.4. Let G be a group. If G has n elements, we say that G is a finite group. We also say that n is a size or an order of group G. If G is an infinite set, we say that G is an infinite group.

We always denote an order of a group G by $|G|$.

Let S_{n} be a set of all permutations σ which are defined by

$$
\begin{aligned}
\sigma_{l}(1) & =i_{1} \\
\sigma_{l}(2) & =i_{2} \\
& \vdots \\
\sigma_{l}(n) & =i_{n}
\end{aligned}
$$

where $i_{j} \in\{1,2, \ldots, n\}, j=1,2, \ldots, n, i_{j} \neq i_{k}$ if $j \neq k$ and $l=1, \ldots, n!$ 目 On the other hand, we can say that $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ is a rearrangement of numbers $\{1,2, \ldots, n\}$, i.e. σ is a bijective function from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}$. For the convenience, we may denote σ in the form

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
i_{1} & i_{2} & \cdots & i_{n}
\end{array}\right)
$$

Example 1.10. Consider set S_{3}. All elements in S_{3} are

$$
\begin{aligned}
& \sigma_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \\
& \sigma_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \quad \sigma_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \quad \sigma_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
\end{aligned}
$$

Theorem 1.3. $\left(S_{n}, \circ\right)$ is a group under the composition operation \circ.
Proof. The proof of this theorem is left as an exercise.

For the sake of convenient we always denote the permutations in S_{n} with cycle notations as the followings :

If $i_{1}, i_{2}, \ldots, i_{r}$ are distinct numbers such that $1 \leq i_{j} \leq n$. We denote $\left(i_{1} i_{2} \ldots i_{r}\right)$

[^1]instead of σ_{k} in S_{n} by
\[

$$
\begin{aligned}
\sigma_{l}\left(i_{1}\right) & =i_{2} \\
\sigma_{l}\left(i_{2}\right) & =i_{3} \\
& \vdots \\
\sigma_{l}\left(i_{r-1}\right) & =i_{r} \\
\sigma_{l}\left(i_{r}\right) & =i_{1}
\end{aligned}
$$
\]

For numbers which do not appear in the cycle, it means that function σ_{l} maps that number to itself, i.e. $\sigma_{l}(j)=j$, for all $j \neq i_{1}, j \neq i_{2}, \ldots, j \neq i_{n}$.

Example 1.11. By example 1.10, we may denote all elements in S_{3} in cycle notations as follows:

$$
\begin{aligned}
& \sigma_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)=(1)=(2)=(3) \\
& \sigma_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=(123)=(231)=(312) \\
& \sigma_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=(132)=(213)=(321) \\
& \sigma_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=(23)=(32) \\
& \sigma_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=(12)=(21) \\
& \sigma_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)=(13)=(31)
\end{aligned}
$$

Group S_{n} plays a major role in consideration a finite group. The theorem concerning about this statement will be presented later.

Exercise

1. Prove theorem 1.3
2. Calculate the order of group S_{n}.
3. Show all elements in S_{4} in both classical and cycle form.

1.4 Subgroups

By example 1.9, we can see that $\mathbb{Z} \subseteq \mathbb{Q}$ and both $(\mathbb{Z},+)$ and $(\mathbb{Q},+)$ are groups. Furthermore, while $\mathbb{Q} \subseteq \mathbb{R}$ and $(\mathbb{Q},+)$ and $(\mathbb{R},+)$ are groups. However, $\mathbb{Q}^{+} \subseteq \mathbb{Q}$, $(\mathbb{Q},+)$ is a group but $\left(\mathbb{Q}^{+},+\right)$is not a group. On the other hand, while $\mathbb{Q}^{*} \subseteq \mathbb{Q}$, $\left(\mathbb{Q}^{*}, \cdot\right)$ is a group but (\mathbb{Q}, \cdot) is not a group. By these examples, we can develop the concept of a group for the smaller set by the following :

Definition 1.5 (Induced Operation). Let G be a group and let H be a subset of G. If for every $a, b \in H$ it is true that the product $a b$ computed in G is also in H, then H is closed under the group operation of G. The binary operation on H thus defined is the induced operation on H from G.

Definition 1.6. Let H be a subset of G where (G, \circ) is a group. If H is closed under the induced operation \circ and (H, \circ) is a group, we say that H is a subgroup of G. We may denote $H \leq G$ or $G \geq H$ to mean H is a subgroup of G.

Notations $H<G$ or $G>H$ may be also used to emphasis that $H \leq G$ but $H \neq G$.

Example 1.12. The well known groups and subgroups in the arithmetic are

$$
(\mathbb{Z},+) \leq(\mathbb{Q},+) \leq(\mathbb{R},+) \leq(\mathbb{C},+)
$$

where \mathbb{C} is a set of complex numbers. Other examples are

$$
\begin{aligned}
\left(\mathbb{Q}^{+}, \cdot\right) & \leq\left(\mathbb{R}^{+}, \cdot\right), \\
\left(\mathbb{Q}^{*}, \cdot\right) & \leq\left(\mathbb{R}^{*}, \cdot\right) \\
(\mathfrak{C}[0,1], \circ) & \leq(\mathfrak{F}[0,1], \circ),
\end{aligned}
$$

and
where $\mathfrak{F}=\{f \mid f:[0,1] \underset{\text { onto }}{\stackrel{1-1}{\longrightarrow}}[0,1]\}^{3}, \mathfrak{C}=\{f \mid f:[0,1] \underset{\text { onto }}{\stackrel{1-1}{\longrightarrow}}[0,1]$ and f is continuous on $[0,1]\}^{\boxed{\square}}$ and \circ is a composition operation.

Example 1.13. By example 1.11, $S_{3}=\{(1),(123),(132),(12),(13),(23)\}$. Let $H=\{(1),(123),(132)\}$. We find that (H, \circ) is a group, i.e. $H \leq G$. (The proof that (H, \circ) is a group will be left as an exercise.)

Remark Every group G has at least two subgroups which are $\{e\}$ and G itself, where e is the identity of that group under the same operation. Another subgroup of G that is not G is called a proper subgroup of G. G itself is the improper subgroup of G. Both $\{e\}$ and G are the trivial subgroups of G. All other subgroups are nontrivial.

Let G be a group and H be a subgroup of G. Since the binary operation on G takes action to every element in G, the induced operation also does to every element in H. Hence properties of the operation on G translate to subgroup H automatically. By this reason, we can conclude that H is a subgroup of G if and only if H has the following properties.

1. H is closed under the same operation on G, i.e. $a, b \in H$ implies $a \circ b \in H$.
2. The identity e of a group G must be in H.

[^2]3. If $a \in H$ then $a^{-1} \in H$.

By all these properties, we can conclude as a theorem by the following.
Theorem 1.4. Let G be a group and $H \subseteq G$ such that $H \neq \phi . H$ is a subgroup of G if and only if for any $a, b \in H, a b^{-1} \in H$.

Proof.

(\Rightarrow) Assume that $H \leq G$ and $a, b \in H$. Since $b \in H$ and H is a group then $b^{-1} \in H . H$ is a group so it must satisfy the closed property of the operation. Thus $a b^{-1}$ must be in H.
(\Leftarrow) Conversely, let $H \subseteq G$ such that $H \neq \phi$ and for all $a, b \in H$, there is always $a b^{-1} \in H$. We want to show that this will satisfy all 3 properties of a subgroup which are said before.

Since $H \neq \phi$, there exists some element $a \in H$. By the assumption $a, b \in H \Rightarrow$ $a b^{-1} \in H$, choose $b=a$. So $a b^{-1}=a a^{-1}=e \in H$. Here a^{-1} must exist in G (since G is a group) and next we want to show that a^{-1} is in H also. Since $e, a \in H$ thus $e a^{-1}=a^{-1} \in H$. This implies that if $a, b, c, \ldots \in H$ then $a^{-1}, b^{-1}, c^{-1}, \ldots \in H$. For $a, b \in H$, we know that $b^{-1} \in H$ also. Thus $a\left(b^{-1}\right)^{-1}=a b \in H$. This concludes that H is a group.

Remark. Is it necessary to prove that o satisfies associative property on H ?

EXERCISE

1. Find all subgroups of S_{3} and S_{4}.
2. Let H and K be subgroups of G. Determine whether $H \bigcup K$ is a subgroup of G or not? Give reason.
3. Let H and K be subgroups of G. Determine whether $H \bigcap K$ is a subgroup of G or not? Give reason.
4. Find all subgroups of $(\mathbb{Z},+)$.
5. Let G be a group and $H=\left\{a \in G \mid(a x)^{2}=(x a)^{2}, \forall x \in G\right\}$. Show that H is a subgroup of G.

Proof. First we want to prove that for any $a \in H$ then $a^{-1} \in H$ also. For any $x \in G,\left(x^{-1} a\right)^{2}\left(a^{-1} x\right)^{2}=e$ and $\left(x^{-1} a\right)^{2}=\left(a x^{-1}\right)^{2}$ (because $\left.a \in H\right)$, it implies that

$$
\begin{aligned}
\left(a x^{-1}\right)^{2}\left(a^{-1} x\right)^{2} & =e \\
\left(x a^{-1}\right)^{2}\left(a x^{-1}\right)^{2}\left(a^{-1} x\right)^{2} & =\left(x a^{-1}\right)^{2} e, \\
e\left(a^{-1} x\right)^{2} & =\left(x a^{-1}\right)^{2}, \\
\left(a^{-1} x\right)^{2} & =\left(x a^{-1}\right)^{2}, \quad \forall x \in G .
\end{aligned}
$$

This shows the result that we want. Let $a, b \in H$. We want to show that $a b^{-1} \in H$. For any $x \in G$,

$$
\begin{aligned}
\left(\left(a b^{-1}\right) x\right)^{2} & =\left(a\left(b^{-1} x\right)\right)^{2} & & \text { associative } \\
& =\left(\left(b^{-1} x\right) a\right)^{2} & & a \in H \\
& =\left(b^{-1}(x a)\right)^{2} & & \text { associative } \\
& =\left((x a) b^{-1}\right)^{2} & & \text { if } b \in H \text { then } b^{-1} \in H \\
& =\left(x\left(a b^{-1}\right)\right)^{2} & & \text { associative. }
\end{aligned}
$$

This shows that if $a, b \in H$ then $a b^{-1}$ has the same property, i.e. $a b^{-1} \in H$. By theorem 1.4, it will be able to conclude that H is a subgroup. This proves the problem.

Theorem 1.5. Let G be a group. Consider \mathcal{S}, which is a collection of some subgroups H. If $\mathcal{S} \neq \phi$ and

$$
\mathcal{H}^{*}=\bigcap_{H \in \mathcal{S}} H
$$

\mathcal{H}^{*} is also a subgroup of G.

Proof. It is obvious that $\mathcal{H}^{*} \subseteq G$. Since an identity of G is in all subgroups of G, thus \mathcal{H}^{*} is not an empty set. If $a, b \in \mathcal{H}^{*}$, it must be $a, b \in H, \forall H \leq G$. Since $H \leq G$, then $a b^{-1} \in H, \forall H \in G$. Thus $a b^{-1} \in \mathcal{H}^{*}$ also. By theorem 1.4, we can conclude that $\mathcal{H}^{*} \leq G$.

Theorem 1.6. Let S be a subset of a group G and \mathcal{S} is a collection of all subgroups of G which contain S. Define

$$
\begin{equation*}
\langle S\rangle=\bigcap_{H \in \mathcal{S}} H \tag{1.1}
\end{equation*}
$$

Hence $\langle S\rangle$ must be a unique smallest subgroup of G which contains S.

Remark. $\langle S\rangle$ is a unique smallest subgroup of G which contains S means

1. $S \subseteq\langle S\rangle$.
2. $\langle S\rangle \leq G$.
3. If H is any subgroup of G which contains S then $\langle S\rangle \subseteq H$.

Proof. The proof is divided into 4 parts.

- $\langle S\rangle$ is a subgroup of G.

Since $G \in \mathcal{S}$, thus \mathcal{S} is not an empty set. By theorem 1.5, it shows that $\langle S\rangle \leq G$.

- $S \subseteq\langle S\rangle$.

For any subgroup H which contains $S, H \in \mathcal{S}$. By the definition of $\langle S\rangle$, the intersection of all sets in \mathcal{S} which contain S must contains S also. So $\langle S\rangle$ contains S.

- If H is any subgroup of G which contains S then $\langle S\rangle \subseteq H$.

Since $\langle S\rangle$ is defined as in (1.1), for any $a \in\langle S\rangle$ then $a \in H, \forall H \in \mathcal{S}$. By the definition of subset, this means $\langle S\rangle \subseteq H, \forall H \in \mathcal{S}$.

- $\langle S\rangle$ is unique.

Let $\langle S\rangle$ and $\left\langle S^{\prime}\right\rangle$ be defined as in (1.1). If we consider $\left\langle S^{\prime}\right\rangle$ as a set which contains S, thus $\left\langle S^{\prime}\right\rangle \subseteq\langle S\rangle$. Conversely, if we consider $\langle S\rangle$ as a set which contains $S,\langle S\rangle \subseteq\left\langle S^{\prime}\right\rangle$. That is $\langle S\rangle=\left\langle S^{\prime}\right\rangle$.

Definition 1.7. Let $\langle S\rangle$ be defined as in theorem 1.6. We call $\langle S\rangle$ "a subgroup of G generated by S ", or " S generates the subgroup $\langle S\rangle$ ".

In that case that S is finite, e.g. $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, we denote $\langle S\rangle$ by $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.

If G is a group and $a \in G$, for any positive integer n, we give the definition of a^{n} and a^{-n} by the followings:

1. $a^{0}=e$, (an identity of group G.) and $a^{1}=a$.
2. $a^{n}=\left(a^{n-1}\right) a$ and $a^{-n}=\left(a^{-1}\right)^{n}$.
3. $a^{m} a^{n}=a^{m+n}=a^{n+m}=a^{n} a^{m}$.
4. $\left(a^{m}\right)^{n}=a^{m n}=\left(a^{m}\right)^{n}$.

Theorem 1.7. If G is a group and $a \in G$, then

$$
\langle a\rangle=\left\{a^{n}\right\} \leq G,
$$

where $n \in \mathbb{Z}$.

Proof. The proof of this theorem is left to be an exercise.

Example 1.14. In this example, we want to show some subgroups generated by
some subsets : Consider $\langle 9,12\rangle$, it is easy to see that

$$
\begin{aligned}
\langle 9,12\rangle=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\} & \leq(\mathbb{Z},+) \\
\langle 5,3\rangle=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} & =(\mathbb{Z},+), \\
\langle-1\rangle=(\mathbb{Z},+) & \leq(\mathbb{Q},+) \\
\langle-1\rangle=\{-1,1\} & \leq\left(\mathbb{Q}^{*}, \cdot\right), \\
\langle-1\rangle=\{-1,1\} & \leq\left(\mathbb{R}^{*}, \cdot\right), \\
\langle\imath\rangle=\{-\imath, \imath,-1,1\} & \leq\left(\mathbb{C}^{*}, \cdot\right), \\
\langle(123)\rangle=\langle(132)\rangle=\{(1),(123),(132)\} & \leq\left(S_{3}, \circ\right) .
\end{aligned}
$$

1.5 Cyclic Group and Elementary Properties

Definition 1.8 (Cyclic Subgroup $\langle a\rangle$). The group H of theorem 1.7 is the cyclic subgroup of G generated by a, and will be denoted by $\langle a\rangle$.

Definition 1.9 (Generator; Cyclic group). An element a of a group G generates G and is a generator for G if $\langle a\rangle=G$. A group G is cyclic if there is some element a in G that generates G.

Example 1.15. These are some well known examples.

- $\left(\mathbb{Z}_{4},+\right)$ is cyclic and both 1 and 3 are generators, that is

$$
<\overline{1}>=<\overline{3}>=\mathbb{Z}_{4}
$$

- $(\mathbb{Z},+)$ is cyclic and 1 is a generator, that is

$$
<1>=\mathbb{Z}
$$

- $(\mathbb{R},+)$ is not cyclic.
- $\left(\mathbb{S}_{3},+\right)$ is not cyclic.

Definition 1.10. An element a of a group G is of finite order m if m is the smallest positive integer such that $a^{m}=e$. Otherwise, we say that a is of infinite order.

Question: What is the order of e ?

Theorem 1.8. A subgroup of a cyclic group is cyclic.

Proof. Let G be a cyclic group generated by a and let H be a subgroup of G. If $H=\{e\}$, then $H=\langle e\rangle$ is cyclic. If $H \neq\{e\}$, then $a^{n} \in H$ for some $n \in \mathbb{Z}^{+}$. Let m be the smallest integer in \mathbb{Z}^{+}such that $a^{m} \in H$. We claim that $c=a^{m}$ generates H; that is,

$$
H=\left\langle a^{m}\right\rangle=\langle c\rangle .
$$

We must show that every $b \in H$ is a power of c. Since $b \in H$ and $H \leq G$, we have $b=a^{n}$ for some n. Find q and r such that

$$
n=m q+r \quad \text { for } \quad 0 \leq r<m
$$

in accord with the division algorithm. Then

$$
a^{n}=a^{m q+r}=\left(a^{m}\right)^{q} a^{r},
$$

so

$$
a^{r}=\left(a^{m}\right)^{-q} a^{n} .
$$

Now since $a^{n}, a^{m} \in H$, and H is a group, both $\left(a^{m}\right)^{-q}$ and a^{n} are in H. Thus

$$
\left(a^{m}\right)^{-q} a^{n} ; \quad \text { that is, } a^{r} \in H
$$

Since m was the smallest positive integer such that $a^{m} \in H$ and $0 \leq r<m$, we mush have $r=0$. Thus $n=q m$ and

$$
b=a^{n}=\left(a^{m}\right)^{q}=c^{q},
$$

so b is a power of c.

Theorem 1.9. Every cyclic group is abelean.

Proof. Let G be a cyclic group, then $G=\langle a\rangle$. If $g_{1}, g_{2} \in G$ thus there exist positive integers r and s such that

$$
g_{1}=a^{r} \quad \text { and } \quad g_{2}=a^{s} .
$$

Hence $g_{1} g_{2}=a^{r} a^{s}=a^{r+s}=a^{s+r}=a^{s} a^{r}=g_{2} g_{1}$.
Remark. The converse of the theorem is not true. For example $(\mathbb{Q},+)$ is an abelean group but it is not cyclic.

Theorem 1.10. If G is an infinite cyclic group, G has two generators.

Proof. Exercise.

Exercise

- Let G be a group and $a \in G$. Prove that an order of a is equal to an order of a^{-1}
- Prove that $(\mathbb{Q},+)$ is not an cyclic group.
- Let $o(a)$ be an order of a. Suppose that $o(a)=n$ and GCD of m and n is 1 . Show that $o\left(a^{m}\right)=n$.

1.6 Cosets

Definition 1.11 (Cosets). Let H be a subgroup of G and $a \in G$. The subset

$$
a H=\{a h \mid h \in H\}
$$

is the left coset of H in G containing a, while

$$
H a=\{h a \mid h \in H\}
$$

is the right coset of H in G containing a.

Example 1.16. Consider $3 \mathbb{Z}=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\} \leq \mathbb{Z}$. These are left cosets of $3 \mathbb{Z}$ in \mathbb{Z}

- $0+3 \mathbb{Z}=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}$,
- $1+3 \mathbb{Z}=\{\ldots,-8,-5,-2,1,4,7,10, \ldots\}$,
- $2+3 \mathbb{Z}=\{\ldots,-7,-4,-1,2,5,8,11, \ldots\}$.
. Also these are right cosets of $3 \mathbb{Z}$ in \mathbb{Z}
- $3 \mathbb{Z}+0=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}$,
- $3 \mathbb{Z}+1=\{\ldots,-8,-5,-2,1,4,7,10, \ldots\}$,
- $3 \mathbb{Z}+2=\{\ldots,-7,-4,-1,2,5,8,11, \ldots\}$.
. We can see that both left and right cosets are identical, $i+3 \mathbb{Z}=3 \mathbb{Z}+i, i=0,1,2$.
However for $H=\{(1),(12)\} \leq S_{3}$, some left and right cosets are
- (13) $\circ H=\{(13),(123)\}$,
- $H \circ(13)=\{(13),(132)\}$.

This example shows that (13) $\circ H \neq H \circ(13)$.

We denote G / H to be a collection of all left cosets of H in G

$$
\begin{equation*}
G / H=\{a H \mid a \in G\} \tag{1.2}
\end{equation*}
$$

and denote $H \backslash G$ to be a collection of all right cosets of H in G

$$
\begin{equation*}
H \backslash G=\{H a \mid a \in G\} . \tag{1.3}
\end{equation*}
$$

Definition 1.12 (Normal Subgroup). Let G be a group and $H \leq G$. If $a H a^{-1}=H$ for all $a \in G$, we call H a normal subgroup of G, this may be denoted by $H \triangleleft G$.

Theorem 1.11. Let $H \leq G$. H is a normal subgroup of G if and only if $a H^{-1} \subseteq$ H for all $a \in G$.

Proof. Exercise.

Theorem 1.12. Every subgroup of an abelean group is a normal subgroup.

Proof. Exercise.

Theorem 1.13. If $H \triangleleft G$ then $a H=H a, \forall a \in G$. (On the other word, if H is a normal subgroup of G then $G / H=H \backslash G$.

Proof. Exercise.

Theorem 1.14. Let H be a normal subgroup of G and G / H be a set of left cosets of H in G, which is defined in (1.2). Definite the binary operator \cdot on G / H by

$$
a H \cdot b H=a b H
$$

$(G / H, \cdot)$ must be a group.

Proof.

- Claim that the binary operator • is well defined. Let $a, b, c, d \in G$ such that $a H=c H$ and $b H=d H$. Hence $a b H=a(b H)=a(d H)=a(H d)=(a H) d=(c H) d=c(H d)=c(d H)=c d H$.
- (Associative)
$a H \cdot(b H \cdot c H)=a H(b c H)=a(b c) H=(a b) c H=a b H \cdot c H=(a H \cdot b H) \cdot c H$.
- (Identity) Since $H=e H$ thus

$$
\begin{aligned}
a H \cdot H & =(a e) H=a H \\
H \cdot a H & =(e a) H=a H
\end{aligned}
$$

This is H is an identity of G / H.

- (Inverse) Let $a H$ be any element of G / H. So

$$
\begin{aligned}
a H \cdot a^{-1} H & =\left(a a^{-1}\right) H=e H=H \\
a^{-1} H \cdot a H & =\left(a^{-1} a\right) H=e H=H
\end{aligned}
$$

We can say that $(a H)^{-1}=a^{-1} H$. All of these give a proof of the theorem.
Definition 1.13 (Factor Group). We call $(G / H, \cdot)$ which is defined in theorem 1.14 that a quotient group of G by H or a factor group of G by H.

Example 1.17. $5 \mathbb{Z} \triangleleft \mathbb{Z}$ and

$$
\mathbb{Z} / \mathbb{Z}_{5}=\{0+5 \mathbb{Z}, 1+5 \mathbb{Z}, 2+5 \mathbb{Z}, 3+5 \mathbb{Z}, 4+5 \mathbb{Z}\}
$$

This is obvious that $\left(\mathbb{Z} / \mathbb{Z}_{5},+\right)$ is a group.

Exercise

1. Let G be a group and $H \leq G$ which is $a, b \in G$. Show that
(a) $a^{-1} b \in H \Longleftrightarrow a H=b H$.
(b) $a \in H \Longleftrightarrow a H=H$.
2. Let G be a group and H, K are subgroups of G. Show that $a(H \cap K)=$ $a H \cap a K, \forall a \in G$.
3. Let $H \triangleleft G$ and $K \triangleleft G$. Show that
(a) $H \cap K \triangleleft G$.
(b) $H K \triangleleft G$ where $H K=\{a b \mid a \in H$ and $b \in K\}$

1.7 Homomorphisms and Isomorphisms

Definition 1.14 (Homomorphism). A map φ of a group G into a group G^{\prime} is a homomorphism if

$$
\varphi(a b)=\varphi(a) \varphi(b)
$$

for all $a, b \in G$.

Example 1.18. 1. Let φ be a mapping from a group G to a group G^{\prime} which is defined by

$$
\varphi(a)=e_{G^{\prime}}, \quad \forall a \in G
$$

where $e_{G^{\prime}}$ is an identity in a group G^{\prime}.
This is easy to see that φ is a homomorphism.
2. Let G be an abelean group and $\varphi: G \rightarrow G$ defined by

$$
\varphi(a)=a^{n}, \quad \forall a \in G,
$$

where n is some integer. It is found that

$$
\varphi(a b)=(a b)^{n}=a^{n} b^{n}=\varphi(a) \varphi(b), \quad \forall a, b \in G .
$$

This shows that φ is a homomorphism.

Theorem 1.15. Let G and G^{\prime} be groups. If $\varphi: G \rightarrow G^{\prime}$ is a homomorphism. The followings must satisfy :

1. $\varphi\left(e_{G}\right)=e_{G^{\prime}}$, where e_{G} is an identity of G and $e_{G^{\prime}}$ is an identity of G^{\prime}.
2. $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$ for all $a \in G$.
3. If $K \leq G$ then $\varphi(K) \leq G^{\prime}$, where $\varphi(K)=\{\varphi(a) \mid a \in K\}$. We call $\varphi(K) \boldsymbol{a}$ homomorphic image of K.

Proof. Exercise.

Definition 1.15 (Kernel). If G and G^{\prime} are groups and $\varphi: G \rightarrow G^{\prime}$ is homomorphism. We define

$$
\operatorname{ker}(\varphi)=\left\{x \in G \mid \varphi(x)=e_{G^{\prime}}\right\}
$$

we call $\operatorname{ker}(\varphi)$ a kernel of G.

Remark. $\operatorname{ker}(\varphi) \neq \phi$. By theorem 1.15, we know that $e_{G} \in \operatorname{ker}(\varphi)$
Definition 1.16 (Isomorphism). A homomorphism $\varphi: G \rightarrow G^{\prime}$ is call an isomorphism if φ is an bijective function from G to G^{\prime}. If there exists an isomorphism mapping G to G^{\prime}, we say that G is isomorphic to G^{\prime}. We may sometimes denote it by $G \approx G^{\prime}$.

Example 1.19. These are some examples of isomorphic groups.

- $(\mathbb{R},+) \approx\left(\mathbb{R}^{+}, \cdot\right)($ Exercise $)$
- $\left(\mathbb{Z}_{4},+\right) \approx\left(\mathbb{U}_{5}, \cdot\right)$ (Exercise)

Theorem 1.16. For two groups which are isomorphic, if one group satisfies the following properties, the other group must satisfy also :

1. abelean.
2. cyclic.
3. have subgroup which is order n.
4. have an element which is order n.
5. each element is an inverse of itself.
6. each element has finite order.
etc.

Proof. Exercise.

Theorem 1.17. Let G be a cyclic group.

1. If G is an infinite group then $G \approx \mathbb{Z}$.
2. If G is a finite group with order n then $G \approx \mathbb{Z}_{n}$.

Proof. Exercise.

Theorem 1.18. Let G be a finite group with order n. G must isomorphic to some subgroup of S_{n}.

Proof. Exercise.

Exercise

1. Prove that
(a) If G and H are groups, thus $G \times H \approx H \times G$.
(b) If $G_{1} \approx G_{2}$ and $H_{1} \approx H_{2}$ are groups, then $G_{1} \times H_{1} \approx G_{2} \times H_{2}$.
2. Prove that
(a) $G \approx G$.
(b) $G \approx G^{\prime}$ then $G^{\prime} \approx G$.
(c) $G \approx G^{\prime}$ and $G^{\prime} \approx G^{\prime \prime}$ implies $G \approx G^{\prime \prime}$.

1.8 Rings

Definition 1.17 (Rings). We call $(R,+, \cdot)$ ring, if R is not empty, both + and \cdot are binary operation on $R,+$ is called additive operation and \cdot is called multiplicative operation, and R satisfies the following properties :

1. $(R,+)$ is an abelean group.
2. $a \cdot(b \cdot c)=(a \cdot b) \cdot c$, for all $a, b, c \in R \quad$ (Multiplication is associative.)
3. For all $a, b, c \in R$

$$
\begin{array}{ll}
a \cdot(b+c)=a \cdot b+a \cdot c, & \text { (left distributive rule.) } \\
(a+b) \cdot c=a \cdot c+b \cdot c, & \text { (right distributive rule.) }
\end{array}
$$

Example 1.20. These are some well known rings :

- $(\mathbb{Z},+, \cdot),(\mathbb{Q},+, \cdot),(\mathbb{R},+, \cdot)$ and $(\mathbb{C},+, \cdot)$ are all rings.
- $(k \mathbb{Z},+, \cdot)$ where k is an integer number, is a ring.
- $\left(\mathbb{Z}_{n},+, \cdot\right)$ where $n=2,3, \ldots$, is a ring.
- $\left(\mathcal{M}_{n \times n},+, \times\right)$ is also a ring.
- Let F be a set of all function $f: \mathbb{R} \rightarrow \mathbb{R}$

Theorem 1.19. If R is a ring and 0 is an zero identity of R with respect to + and $a, b, c \in R$ then the following statements are true.

1. $0 a=a 0=0$
2. $a(-b)=(-a) b=-(a b)$
3. $(-a)(-b)=a b$
4. $a(b-c)=a b-a c$ and $(a-b) c=a c-b c$

Proof. Exercise.

Definition 1.18 (A ring with unity). Let $(R,+, \cdot)$ be a ring. We call R a ring with unity if R has an identity with respect to the multiplication operation \cdot

Definition 1.19 (Commutative ring). Let $(R,+, \cdot)$ be a ring. We call R a commutative ring if $a b=b a$ for all $a, b \in R$. If $a b \neq b a$ for some $a, b \in R$, we call R a noncommutative ring.

Definition 1.20 (Unit). Let $(R,+, \cdot)$ be a ring with unity and $a \in R$. If a has an inverse with respect to the multiplicative operation \cdot, we call a a unit of R and call its inverse (with respect to the multiplicative operation \cdot) a reciprocal of a.

Theorem 1.20. Let $(R,+, \cdot)$ be a ring with unity which is not a trivial ring. We find that the identity 0 is not equal to the unity 1.

Proof. Exercise.

Exercise

1. Let R and S be rings and $R \times S$ be an cartesian product of R and S. For (r, s) and $\left(r^{\prime}, s^{\prime}\right) \in R \times S$, define

$$
\begin{aligned}
(r, s)+\left(r^{\prime}, s^{\prime}\right) & =\left(r+r^{\prime}, s+s^{\prime}\right) \\
(r, s) \cdot\left(r^{\prime}, s^{\prime}\right) & =\left(r \cdot r^{\prime}, s \cdot s^{\prime}\right)
\end{aligned}
$$

Show that $(R \times S,+, \cdot)$ is a ring.
2. Define operations $*$ and \circ on \mathbb{Q} by

$$
\begin{aligned}
& a * b=a+b+1 \\
& a \circ b=a b+a+b,
\end{aligned}
$$

for $a, b \in \mathbb{Q}$. Show that $(\mathbb{Q}, *, \circ)$ is a ring.
3. Prove theorem 1.19.
4. Prove theorem 1.20 .

1.9 Fields and Ordered Fields

Definition 1.21 (Field). Let $(F,+, \cdot)$ be a nontrivial commutative ring with unity. If $F \backslash\{0\}$ is a group with respect to the multiplicative operation • then we call F a field.

Remark. To make the definition of a field looked like definitions of a group and a ring as before, we make define a field by the following statements :

We call $(F,+, \cdot)$ a field if F is not an empty set and + and \cdot are binary operations on F which satisfy the following properties :

1. $(F,+)$ is an abelean group.
2. $(F \backslash\{0\}, \cdot)$ is an abelean group.
3. For all $a, b, c \in F$

$$
a \cdot(b+c)=a \cdot b+a \cdot c \quad \text { and } \quad(a+b) \cdot c=a \cdot c+b \cdot c
$$

Example 1.21. \mathbb{Z} is not a field because $2 \in \mathbb{Z}$ but 2 has no an inverse with respect to an operation multiplication. However, it is obvious that $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
$\left(\mathcal{M}_{n \times n},+, \cdot\right)$, where $\mathcal{M}_{n \times n}$ is a set of all $n \times n$ nonsingular matrices, is not a field even $\mathcal{M}_{n \times n}$ has a unity and for all $A \in \mathcal{M}_{n \times n}$ such that A is not a zero matrix has an inverse. Why?

A field provides an algebraic structure which makes us enable to have basic operations of addition and multiplication. Furthermore, there is superimposed on this algebraic structure an order relation.

Definition 1.22 (Ordered Field). Let $(F,+, \cdot)$ be a field. A field F is an ordered field provided that there is a nonempty subset P of F such that the following two postulates hold:

1. For each $a \in F$, one and only one of the following conditions holds:

- $a \in P$, or
- $a=0$, or
- $-a \in P$.

2. If $a, b \in P$, then $a+b \in P$ and $a b \in P$.

In an ordered field F, the elements of the set P are called positive. All other elements of F, except zero, are called negative. If two elemtents of F are both positive, or both negative, then we say they have the same sign; if one is positive and the other is negative, they have opposite signs.

Set of rational numbers $(\mathbb{Q},+, \cdot)$ provides an ordered field and set of real numbers $(\mathbb{R},+, \cdot)$ does also; however set of complex numbers $(\mathbb{C},+, \cdot)$ does not. Inequalities can be introduced in any ordered field F. For $a, b \in F$, we make the following definitions:

Definition 1.23 (Inequalities). 1. $a<b$ (read, " a is less than $b "$) provided $b-a$ is positive.
2. $a>b$ (read, " a is greater than b ") provided $b<a$ or $a-b$ is positive.
3. $a \leq b$ (read, " a is less than or equal to b ") provided $a<b$ or $a=b$.
4. $a \geq b$ (read, " a is greater than or equal to b ") provided $a>b$ or $a=b$.

Exercise

1. Let F be an ordered field and $a \in F$. Show that
(a) a is positive if and only if $a>0$.
(b) a is negative if and only if $-a$ is positive.
2. Let F be an ordered field and $a, b, c \in F$. Show that
(a) $a<b$ if and only if $a+c<b+c$.
(b) If $a \leq b$ and $c \leq d$ then $a+c<b+d$.
(c) If $a<b$ and c is positive then $a c<b c$.
(d) If $a<b$ and c is negative then $a c>b c$.
3. (Laws of sign.) Let a and b be elements of an ordered field F. Show that if a and b have the same sign, then their product is positive; if they have opposite signs, then their product is negative.
4. Show that the sum of a positive real number and its reciprocal is greater than or equal to 2 .

Chapter 2

Real numbers

2.1 Real numbers

Remark. Why is the field of rational numbers \mathbb{Q} not sufficient?

2.1.1 Geometric Motivation

For a long time, the Greeks thought that every number is rational. A rational number $\frac{m}{n}$ can be represented geometrically as follows :

Figure 2.1: Line segment with length 1.

Fix a line segment, give it length 1 . Divide it into n pieces of equal length. Each piece will have length $\frac{1}{n}$ Past m such segments together. The resulting segment has length $\frac{m}{n}$.

With the discovery of the law of Pythagoras, a problem arose : By the law of Pythagoras,

$$
x^{2}=1^{2}+1^{2}=2,
$$

Figure 2.2: Line segment with length 1 divided into n pieces of equal length.

Figure 2.3: $m \frac{1}{n}$-pieces past together.
where x is the length of the hypothenuse.
Question : What rational number is x ?

Theorem 2.1. There exists no rational number x such that $x^{2}=2$.

Proof. Assume to the contrary that there exists $x \in \mathbb{Q}, x=\frac{m}{n}$ so that $x^{2}=2$. we assume that GCD of m and n is 1 .

$$
\begin{aligned}
& \frac{m^{2}}{n^{2}}=2 \\
& m^{2}=2 n^{2}
\end{aligned}
$$

If $2 \mid m^{2}$ then $2 \mid m$ and implies to $m=2 k$ for some integer k.

$$
\begin{aligned}
(2 k)^{2} & =2 n^{2} \\
4 k^{2} & =2 n^{2} \\
2 k^{2} & =n^{2}
\end{aligned}
$$

This means $2 \mid n^{2}$ and $2 \mid n$. Thus the GCD of n and m cannot be 1 . It contradicts to the assumption. x cannot be rational.

Because $x^{2}=2$ has no solution in \mathbb{Q}, we need to introduce additional numbers. Before we must discuss the idea of upperbounds.

Figure 2.4: Figure of a righted-triangle which has the length of sides 1,1 and x.

2.1.2 Upper and Lower Bound

Definition 2.1 (Upper and Lower Bound). Let F be an ordered set with order " $<"$, and S be a nonempty subset of F.

- an element M of F is called upper bound of S if

$$
x \leq M, \quad \text { for all } x \in S
$$

- an element m of F is called lower bound of S if

$$
m \leq x, \quad \text { for all } x \in S
$$

- If an upper bound M of S exists, then we say that S is bounded above.
- If a lower bound m of S exists, then we say that S is bounded below.
- If both, upper and lower bounds exists, then we say that S is bounded.
- If S is not bounded, then we say that S is unbounded.

Example 2.1. 1. Let $F=\mathbb{Q}$ and $S=\{x \in \mathbb{Q}: 0<x<1\}$.

- Upper bound : $1,2,2.5, \ldots$ Every rational number $M \geq 1$ is an upper bound.
- Lower bound : $0,-1,-4.25, \ldots$ Every rational number $m \leq 0$ is an lower bound.

This shows that S is bounded.
2. Let $F=\mathbb{Q}$ and $S=\{x \in \mathbb{Q}: x>0\}$.

- Lower bound : Every rational number $m \leq 0$ is an lower bound.
- Upper bound : There is no upper bound. This shows that S is unbounded.

3. Let $F=\mathbb{Q}$ and $S=\mathbb{Q} . S=\mathbb{Q}$ is unbounded. (Exercise)

Let F be a field. Given a subset S of F, we set

$$
-S=\{y \in F: y=-x, \text { for some } x \in S\}
$$

Theorem 2.2. Let S be a nonempty subset of an ordered field F. Let $m, M \in F$

1. M is an upper bound of S iff $-M$ is a lower bound of $-S$.
2. m is a lower bound of S iff $-m$ is an upper bound of $-S$.

Proof.

1. (\Rightarrow) Suppose, M is an upper bound of S

$$
\begin{aligned}
M & \geq x, \quad \forall x \in S \\
-M & \leq-x, \quad \forall x \in S \\
-M & \leq y, \quad \forall y \in-S
\end{aligned}
$$

thus $-M$ is a lower bound of $-S$.
(\Leftarrow) Just go backward above.
2. Similar.

Let S be a nonempty subset of an ordered field F. An element $l \in F$ is called least upper bound or supremum of S if

1. l is an upper bound of S.
2. If M is any upper bound of S, then $l \leq M$.

We write $l=\sup S(l=$ l.u.b $S)$
If in addition, l is an element of S, then l is called the maximum of S. Remark. There exists at most one least upper bound. We speak of the least upper bound.

An element $g \in F$ is called greatest lower bound or infimum of S if

1. g is a lower bound of S.
2. If m is any lower bound of S, then $m \leq g$.

We write $g=\inf S(g=$ g.l.b $S)$
If in addition, g is an element of S, then g is called the minimum of S.

Example 2.2. $S=\{x \in \mathbb{Q}, 0<x<1\}$.
Claim : $1=\sup S$

1. For all x in $S, x<1 \Rightarrow 1$ is an upper bound.
2. Let M be any upper bound. Must show that $1 \leq M$.

Suppose to the contrary that

$$
\begin{aligned}
& 0<M<1 \\
& 0<\quad \frac{M}{2} \quad<\frac{1}{2} \\
& 0<\frac{1}{2}<\frac{M}{2}+\frac{1}{2}<1 \\
& \Rightarrow \quad \frac{M+1}{2} \in S \text {. } \\
& \text { but } \frac{M}{2}+\frac{M}{2} \quad<\quad \frac{M}{2}+\frac{1}{2} \\
& M \quad<\quad \frac{M+1}{2} \in S
\end{aligned}
$$

This shows M is less than some element in S. It contradicts to the assumption that M is an upper bound of $S . M<1$ is impossible. Thus $M \geq 1$.
$\Rightarrow 1$ is least upper bound.
Similarly $0=\inf S$.

Example 2.3. $S=\{x \in \mathbb{Q}, 0 \leq x \leq 1\}$. Just as before $\sup S=1$ and $\inf S=0$.
Moreover, $1 \in S \Rightarrow 1$ is the maximum of S and $0 \in S \Rightarrow 0$ is the minimum of S

Exercise

1. $S=\left\{\left.\frac{1}{n} \right\rvert\, n=1,2,3, \ldots\right\}$. Show that $\inf S=0$ and S has no minimum.
2. Let S be a nonempty subset of an ordered field F. Show that
(a) If $\sup S$ exists, say $l=\sup S$ then $\inf (-S)$ exists and $\inf (-S)=-l$.
(b) If $\inf S$ exists, say $g=\inf S$ then $\sup (-S)$ exists and $\sup (-S)=-g$.
3. Let $S \subseteq \mathbb{Q}$ and $S=\left\{x \mid x^{2}<2\right\}$. Does the supremum of S exist? Give a reason.

Theorem 2.3. Let S be a nonempty subset of an ordered field F. And element $l \in F$ is the least upper bound of S iff

1. l is an upper bound.
2. For any $\varepsilon>0$, there exists $x \in S$ so that $l-\varepsilon<x$.

Proof. (\Rightarrow) Assume $l=\sup S$. Clearly, l is an upper bound of S. Let $\varepsilon>0$ be given then $l-\varepsilon$ cannot be an upper bound. This means, $\exists x \in S$ so that $l-\varepsilon<x$.
(\Leftarrow) Suppose $l \in F$ satisfies (1) and (2). Suppose to the contrary that there exists an upper bound M of S with $M<l$. Let $\varepsilon=l-M>0$. By (2), $\exists x \in S$ so that $l-\varepsilon<x . l-(l-M)<x \Rightarrow M<x$. It contradicts to the assumption. So every upper bound M of S satisfies $l \leq M$. Hence l is the least upper bound of S.

Given two subsets S, T of a field F, we set

$$
S+T=\{s+t \mid s \in S, t \in T\}
$$

If $c \in F$, we set

$$
c S=\{c s \mid s \in S\} .
$$

Theorem 2.4. If $s=\sup (S)$ and $t=\sup (T)$ then $S+T$ has the least upper bound $\sup (S+T)=s+t$.

Proof. Exercise. (Hint. apply theorem 2.3 to prove this theorem.)

Theorem 2.5. Let S be a nonempty subset of an ordered field F, and $c \in F$. Suppose $s=\sup (S)$ exists.

1. If $c>0$ then $\sup (c S)$ exists and $\sup (c S)=c s$.
2. If $c<0$ then $\inf (c S)$ exists and $\inf (c S)=c s$.

Proof.

1. Assume $c>0$
(a) Since $s=\sup (S)$

$$
\begin{array}{rlrl}
x & \leq s & \forall x \in S \\
c x & \leq c s & & \text { as } c>0 \\
y & \leq c s & \forall y \in c S
\end{array}
$$

So $c s$ is an upper bound of $c S$.
(b) Because $s=\sup (S)$, by theorem 2.3, for arbitrary $\varepsilon>0$, we can find $x \in S$ so that

$$
\begin{array}{ll}
s-\frac{\varepsilon}{c}<x & \\
c s-\varepsilon<c x & \forall x \in S \\
c s-\varepsilon<y \quad & \forall y \in c S
\end{array}
$$

By theorem 2.3 again, $c s=\sup (c S)$
2. $c<0$
(a) assume $c=-1$. So $c S=-1 S=-S$. By theorem 2.2, $\inf (c S)=$ $\inf (-S)=-\sup (S)=-s=c s$
(b) In general, we write $c=-\tilde{c}$ where $\tilde{c}>0$.

$$
\begin{aligned}
c S & =(-\tilde{c}) S=-(\tilde{c} S) \\
\inf (c S) & =\inf (-(\tilde{c} S))
\end{aligned}
$$

By case 2a. $\quad \inf (-(\tilde{c} S))=-\sup (\tilde{c} S)$
Since $\tilde{c}>0 \quad \sup (\tilde{c} S)=\tilde{c} s$
Thus $\quad \inf (-(\tilde{c} S))=-\tilde{c} s=c s$

$$
\therefore \quad \inf (c S)=c s
$$

Remark. Theorem 2.3,2.4, 2.5 can be reformulated for greatest lower bounds (infimums) in a very similar way.

Question: Does every subset S of \mathbb{Q} which is bounded above have the least upper bound?

Theorem 2.6. Let $S=\left\{x \in \mathbb{Q}: 0<x\right.$ and $\left.x^{2}<2\right\}$. The set S is bounded above but $\sup (S)$ does not exist.

Proof.

1. Since there are many rational numbers a such that $a^{2}>2$, e.g $1.5,2,3, \ldots$. It is obvious that S is bounded above.
2. Now show that S has no least upper bound.

Claim : If l is the least upper bound of S then $l^{2}=2$.
Proof of the claim : Suppose $l=\sup (S)$ exists. Consider the number

$$
\begin{align*}
q & =l-\frac{l^{2}-2}{l+2}=\frac{2 l+2}{l+2} \tag{2.1}\\
q^{2}-2 & =\left(\frac{2 l+2}{l+2}\right)^{2}-2=\frac{2\left(l^{2}-2\right)}{(l+2)^{2}} \tag{2.2}
\end{align*}
$$

(a) Case 1. $l^{2}<2$

As $l^{2}-2<0$ then $q^{2}-2<0$ and $q^{2}<2$ (by equation (2.2)). Since $q^{2}<2$ then $q \in S$. Equation 2.1 shows that $q>l$ which contradicts to the assumption that l is the least upper bound of S. So this case is impossible.
(b) Case 2. $l^{2}>2$

As $l^{2}-2>0$ then $q^{2}-2>0$ and $q^{2}>2$ (by equation (2.2)). Thus q is an upper bound of S. By Equation 2.1, $q<l$ this contradicts to l is the least upper bound which must $l \leq q$. So $l^{2}>2$ is also impossible.

Thus, necessarily, $l^{2}=2$. This proves the claim.
However, by theorem 2.1, the equation $l^{2}=2$ has no solution in \mathbb{Q}. This shows that S has no least upper bound in \mathbb{Q} by the claim.

Remark. The proof shows the fact that S has no least upper bound in \mathbb{Q} and the fact that $l^{2}=2$ has no rational solution are equivalent.

Definition 2.2 (Completeness Property). An ordered field F has the the least-upper-bound property if every nonempty subset S of F which is bounded above has a least upper bound. The least-upper-bound property is also called the completeness property or completeness axiom.

Remark. \mathbb{Q} does not have the completeness property as shown in theorem 2.6.

Theorem 2.7. There exists an ordered field \mathbb{R} which has the completeness property. Moreover, this field contains \mathbb{Q} as a subfield.

Proof. Coming soon in the seminar.
Remark. The elements of \mathbb{R} are called real numbers. An element of \mathbb{R} which is not rational is called irrational.

Theorem 2.8. There exists $x>0$ in \mathbb{R} such that $x^{2}=2$.
Proof. Set $S=\left\{x \in \mathbb{R}: x>0, x^{2}<2\right\}$. As shown in the proof of theorem 2.6, S is bounded above. As \mathbb{R} has the least-upper-bound property

$$
l=\sup (S), \quad l \in \mathbb{R} \quad \text { So clearly } l>0
$$

By the proof of the claim in part 2 of theorem 2.6, $l^{2}=2, l$ is the solution of $x^{2}=2$. l may be sometimes denote by $\sqrt{2}$.

Furthermore, for every $x>0$ in \mathbb{R}, and every $n \in \mathbb{Z}^{+}$(or natural numbers \mathbb{N}), there exists a unique $y>0$ so that $y^{n}=x$. This y is written as $y=\sqrt[n]{x}$ or $y=x^{1 / n}$.

Exercise

1. Prove the theorem 2.4, page 39 .
2. Prove or disprove each of the following. (The sets $c S$ is as defined in Theorems 2.5)
(a) If S is bounded, then every subset of S is bounded.
(b) If every subset of S is bounded then S is bounded.
(c) If c is a real number and S is bounded above, then $c S$ is bounded above.
(d) If c is a real number and S is bounded, then $c S$ is bounded.
(e) If c is a real number and $c S$ is bounded, then S is bounded.

Theorem 2.9 (Archimedian Property). If $a, b \in \mathbb{R}, a>0$ then there exists $n \in \mathbb{Z}^{+}$ (or \mathbb{N}) such that $b<n a$.

Figure 2.5: Figure to show an idea of Archimedian property.

Proof. Suppose to the contrary that $b \geq n a$ for all $n \in \mathbb{N}$. Thus the set $S=$ $\{n a \mid n \in \mathbb{N}\}$ is bounded above (by b). By the completeness property $l=\sup (S)$ must exist. In particular $n a \leq l$, for all $n \in \mathbb{N}$. Since $n \in \mathbb{N}$, this implies $n+1 \in \mathbb{N}$ also.

$$
\begin{aligned}
(n+1) a & \leq l \\
n a+a & \leq l \\
n a & \leq l-a \quad \forall n \in \mathbb{N}
\end{aligned}
$$

So $l-a$ is an upper bound of $S . l-a<l$ contradicts to l is the least upper bound of S. Thus we must have $b<n a$ for some $n \in \mathbb{N}$. This theorem is called Archimedian property or Archimedian law.

Corollary 2.10. Set \mathbb{Z} and \mathbb{N} is not bounded above in \mathbb{R}.

Proof. Suppose to the contrary that there exits $b \in \mathbb{R}$ such that $n \leq b$, for all $n \in \mathbb{Z}$ (or $\mathbb{N})$. By the Archimedian property $(a=1)$, there exists n_{0} s.t. $b<n_{0}$ for some $n_{0} \in \mathbb{Z}$ (or \mathbb{N}). This is contradiction. Thus \mathbb{Z} (or \mathbb{N}) is unbounded in \mathbb{R}.

Corollary 2.11. Let $\varepsilon>0$ be any positive real number. Then there exists $n \in \mathbb{N}$ such that

$$
0<\frac{1}{n}<\varepsilon
$$

Proof. Exercise.

Theorem 2.12. Let $x \in \mathbb{R}$ and $S=\{n \in \mathbb{Z} \mid n \leq x\}$ then there exists $m \in S$ so that $m \leq x<m+1$.

Proof. It is clear that S is bounded above (x is one of upper bounds). Thus $n_{0}=\sup (S)$ exists in \mathbb{R}.

Claim : n_{0} is an integer.
By theorem 2.3, there exists $m \in S$ such that $n_{0}-\frac{1}{2}<m \leq n_{0}$. Thus $n_{0}<m+\frac{1}{2} \leq m+1$. So

$$
m \leq n_{0}<m+1
$$

This inequality implies that m must be the largest element of S which means $m=n_{0}$, i.e. the maximum is equal to the supremum.

Remark. The integer m in the theorem such that $m \leq x<m+1$ is called the greatest integer less than or equal to x. The new function may be defined as

$$
\lfloor x\rfloor=m
$$

which is called a floor function. On the other way, if we define the new function

$$
\lceil x\rceil=n,
$$

where n is the integer such that $n-1<x \leq n$. This function is called a ceil function.

Exercise

1. Prove corollary 2.11
2. In the case that we consider on the set of rational numbers. Prove that if $a, b \in \mathbb{Q}, a>0$ then there exists $n \in \mathbb{Z}^{+}$such that $b<n a$. This theorem looks like the Archimedian property which is true on the set of rational numbers also. However the proof of this theorem is not exactly the same with the prove of Archimedian property for a real number. Why?

Theorem 2.13 (Density of the rational numbers in \mathbb{R}). Let x, y be two real numbers with $x<y$ then there exists a rational number r such that $x<r<y$.

Proof. Let $a=1$ and $b=\frac{1}{y-x}$. By the Archimedian property, there exists $n \in \mathbb{Z}^{+}$ such that

$$
\begin{aligned}
\frac{1}{y-x} & <n \\
1 & <n y-n x \\
n x+1 & <n y
\end{aligned}
$$

By theorem 2.12, there exits $m \in \mathbb{N}$ such that $m \leq n x<m+1$. Thus

$$
m \leq n x<m+1 \leq n x+1<n y
$$

Divide by n

$$
x<\frac{m+1}{n}<y, \quad \text { which } \frac{m+1}{n} \in \mathbb{Q} .
$$

Theorem 2.14 (Density of the irrational numbers in \mathbb{R}). Let x, y be two real numbers with $x<y$ then there exists an irrational number q such that $x<q<$ y.

Proof. By theorem 2.13, there exists $r \in \mathbb{Q}$ so that

$$
\frac{x}{\sqrt{2}}<r<\frac{y}{\sqrt{2}} .
$$

Thus $x<\sqrt{2} r<y$. If $r=0$ then we have $0<y$ and there must be another rational number r^{\prime}, so that

$$
\frac{x}{\sqrt{2}}<0<r^{\prime}<\frac{y}{\sqrt{2}} .
$$

This shows that there must exist a nonzero rational number r such that

$$
x<\sqrt{2} r<y
$$

Claim : $\sqrt{2} r$ is irrational if r is a nonzero rational number. Suppose to the contrary that $\sqrt{2} r$ is rational then $\sqrt{2} r=\frac{a}{b}$, where $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^{+}$. Then $\sqrt{2}=\frac{a}{b r}$. Since r is rational then $r=\frac{\bar{a}}{\bar{b}}$ for some $\bar{a} \in \mathbb{Z}$ and $\bar{b} \in \mathbb{Z}^{+}$.

$$
\sqrt{2}=\frac{a \bar{b}}{b \bar{a}}
$$

This is contradict to $\sqrt{2}$ is an irrational number. Hence $\sqrt{2} r$ where r is a nonzero rational number is irrational.

Let $q=\sqrt{2} r$ then we can find an irrational number q, which is $x<q<r$.

Exercise

1. Prove or disprove
(a) If x and y are rational numbers, then $x+y$ is rational.
(b) If x and y are rational numbers, then $x y$ is rational.
(c) If x and y are irrational numbers, then $x+y$ is irrational.
(d) If x and y are irrational numbers, then $x y$ is irrational.
(e) If x is rational but y is irrational, then $x+y$ is irrational.
(f) If x is rational $(x \neq 0)$ but y is irrational, then $x y$ is irrational.

2.2 Cardinality

Definition 2.3. A set \mathcal{A} is said to be cardinally equivalent (or equinumerous) to a set B, if there exists a bijection

$$
f: \mathcal{A} \xrightarrow[\text { onto }]{\stackrel{1-1}{\rightarrow}} B .
$$

We write $\mathcal{A} \sim B$

Example 2.4. - In the case that $\mathcal{A}=\{a, b, c\}$ and $B=\{1,2,3\}$. The map $f: \mathcal{A} \longrightarrow B$ defined by

$$
\begin{aligned}
f(a) & =1, \\
f(b) & =2, \\
f(c) & =3 .
\end{aligned}
$$

It is clear that f is a bijection. So $\mathcal{A} \sim B$.

- $U=\{x \in \mathbb{R}: 0<x<1\}$ and $I=\{x \in \mathbb{R}: 0<x<2\}$

Define $f: U \longrightarrow I$ by $f(x)=2 x$.

Claim : f is a bijection.

Injective Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in U$.

$$
\begin{aligned}
2 x_{1} & =2 x_{2} \\
x_{1} & =x_{2}(\Rightarrow) \text { injective }
\end{aligned}
$$

Surjective Let $y \in I$ be arbitrary. Set $x=\frac{y}{2}$. Since $0<y<2 \Leftarrow 0<x=\frac{y}{2}<1$. Thus $x \in U$. Then $f(x)=2 x=2 \frac{y}{2}=y . \Leftarrow f$ is surjective.

This proves the claim. Thus $U \sim I$.

Theorem 2.15. Let A, B, C be sets.

1. If $A \sim B$ then $B \sim A . \quad$ (Symmetry)
2. $A \sim A \quad$ (Reflexive)
3. If $A \sim B$ and $B \sim C$ then $A \sim C \quad$ (Transitivity)

Proof. Exercise.
Remark. A relation satisfies symmetry, reflexive and transitivity properties is called an equivalent relation.

Definition 2.4 (Finite and Infinite sets). Given an $n \in \mathbb{Z}^{+}$, set $C_{n}=\{1,2,3, \ldots, n\}$. A set \mathcal{A} is finite if it is empty or $\mathcal{A} \sim C_{n}$ for some $n \in \mathbb{Z}^{+}$. A set which is not finite is called infinite.

We say \mathcal{A} has n elements if $\mathcal{A} \sim C_{n}$. We write $|\mathcal{A}|=n$. $(|\mathcal{A}|$ is called the cardinality of \mathcal{A}).

Theorem 2.16. Let A, B be nonempty finite sets. $A \sim B$ iff $|A|=|B|$.

Proof. \Rightarrow Suppose $A \sim B$.
Let $n=|A|$. There exists a bijection $f: C_{n} \longrightarrow A$.
Because $A \sim B$, there exists a bijection $g: A \longrightarrow B$. Then $g \circ f$ is a bijection of C_{n} onto B. So $|B|=n$ also.
\Leftarrow Suppose $|A|=|B|$. Let $n=|A|=|B|$. There exists bijections

$$
\begin{array}{ll}
f: & C_{n} \Longrightarrow A \\
g & : \quad C_{n} \Longrightarrow B
\end{array}
$$

Then $g \circ f^{-1}$ is a bijection of A onto B. So $A \sim B$.

Example 2.5. We have already seen in some previous examples that $\mathbb{Z}_{n}, \mathbb{U}_{n}, S_{n}$ are finite sets while $\mathbb{Z}, k \mathbb{Z}, \mathbb{Z}^{+}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are infinite sets. Furthermore,

$$
\begin{aligned}
\left|\mathbb{Z}_{n}\right| & =n, \\
\left|\mathbb{U}_{n}\right| & =\phi(n), \\
\left|\mathbb{S}_{n}\right| & =n!,
\end{aligned}
$$

where $\phi(n)$ is a number of positive integers a which GCD of a and n equals to 1 .
However, even the cardinalities of some sets are infinite, it is important to have an to idea to make comparison of those sets. This concept will be shown later.

Exercise

1. Show that
(a) $\mathbb{Z}^{+} \sim \mathbb{Z}$.
(b) $\mathbb{Z} \sim 2 \mathbb{Z}$.
(c) $(-1,1) \sim(0,1)$.
(d) $(a, b) \sim(c, d)$.
(e) $[0,1] \sim(0,1)$.
(f) $\mathbb{R} \sim(0,1)$.
2. Prove theorem 2.15.
3. Show that if $A \sim C_{m}$ and $A \sim C_{n}$ then $m=n$.
4. Show that set $\mathbb{N}=\mathbb{Z}^{+}$is infinite.

Definition 2.5 (Countable sets). A set \mathcal{A} is called countable (or denumerable) if $\mathcal{A} \sim \mathbb{Z}^{+}$or $\mathbb{Z}^{+} \sim \mathcal{A}$. A set \mathcal{A} is called at most countable if it is finite or countable. A set which is neither finite nor countable is called uncountable.

Remark. This definition is not standard. Some authors call a set \mathcal{A} countable if $\mathcal{A} \sim \mathbb{Z}^{+}$or \mathcal{A} is finite.

Example 2.6. - $\mathbb{N}=\mathbb{Z}^{+}$is countable since $\mathbb{Z}^{+} \sim \mathbb{Z}^{+}$.

- $2 \mathbb{Z}$ is countable. (By exercise $1 b$)
- \mathbb{Z} is countable.

Consider $f: \mathbb{Z} \longrightarrow \mathbb{Z}^{+}$by

$$
f(n)=\left\{\begin{array}{cl}
\frac{n}{2}, & n \text { is even } \\
-\frac{n-1}{2}, & n \text { is odd }
\end{array}\right.
$$

Since this function f is bijective, it is clear that \mathbb{Z} is countable.

Remark. A countable set is a set which can be listed by

$$
\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}
$$

because of the bijective function $f: \mathbb{Z}^{+} \longrightarrow \mathcal{A}$,

$$
f(1)=a_{1}, f(2)=a_{2}, \ldots f(n)=a_{n}, \ldots
$$

Recall : Let A, B be two sets, the Cartesian product of A and B is the set

$$
A \times B=\{(a, b): a \in A, b \in B\} .
$$

Theorem 2.17. If A and B are countable sets, then their Cartesian product $A \times B$ is countable.

Proof. As A and B are countable, we can list theirs elements as

$$
\begin{aligned}
A & =\left\{a_{1}, a_{2}, \ldots, a_{m}, \ldots\right\} \\
B & =\left\{b_{1}, b_{2}, \ldots, b_{n}, \ldots\right\} \\
\text { So } A \times B & =\left\{\left(a_{m}, b_{n}\right): a_{m} \in A, b_{n} \in B\right\} \text {. }
\end{aligned}
$$

Write the elements of $A \times B$ as follows:

Now re-indices, write $A \times B=\left\{c_{1}, c_{2}, c_{3}, \ldots\right\}$ where c_{i} are chosen along the arrows

$$
\begin{aligned}
1^{\text {st }} \text { arrow } & c_{1} \\
2^{\text {nd }} \text { arrow } & c_{2} \\
& =\left(a_{1}, b_{1}\right) \\
c_{3} & =\left(a_{2}, b_{1}\right) \\
3^{\text {rd }} \text { arrow } & c_{4} \\
& =\left(a_{1}, b_{3}\right) \text { In general, if }\left(a_{m}, b_{n}\right) \text { is an arbitrary element in } \\
c_{5} & =\left(a_{2}, b_{2}\right) \\
c_{6} & =\left(a_{3}, b_{1}\right)
\end{aligned}
$$

$A \times B$, there exists an arrow through $\left(a_{m}, b_{n}\right)$, the $(m+n-1)^{\text {th }}-$ arrow. Along this arrow there are finitely many elements. Counting the number of elements, there exists an i so that $c_{i}=\left(a_{m}, b_{n}\right)$. This shows that we can list the elements of $A \times B$ by $c_{1}, c_{2}, c_{3}, \ldots$, i.e. $A \times B$ is countable.

Corollary 2.18. $\mathbb{Z} \times \mathbb{Z}, \mathbb{Z}^{+} \times \mathbb{Z}, \mathbb{Z}^{+} \times \mathbb{Z}^{+}, \underbrace{\mathbb{Z} \times \cdots \times \mathbb{Z}}_{n-\text { times }}$ are countable.
Remark : Let T be a nonempty subset of \mathbb{Z}^{+}then T contains a minimum. (Prove by the use of property of least-upper-bound.)

Theorem 2.19. Let S be an at most countable set, and $T \subseteq S$, then T is at most countable.

Proof. If S is finite, then T must be finite, this implies T is at most countable. Assume, S is infinite. If T is finite T is also clear to be at most countable. We then consider only the case T is infinite. As S is countable, there exists a bijection $f: \mathbb{Z}^{+} \longrightarrow S$. Setting $s_{n}=f(n)$, so we can list the elements of S,

$$
S=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}
$$

Set $I=\left\{n: s_{n} \in T\right\}$ then I is infinite. Let a_{1} be the smallest element of I, a_{2} be the smallest element of $I \backslash\left\{a_{1}\right\}, a_{3}$ be the smallest element of $I \backslash\left\{a_{1}, a_{2}\right\}, \ldots$

In general, suppose we have found $a_{1}, a_{2}, \ldots, a_{k}$, let a_{k} be the smallest element of $I \backslash\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$ Define $g: \mathbb{Z}^{+} \longrightarrow A$ by $g(k)=a_{k}$. Clearly, g is a bijective by the construction of a_{k}. So $f \circ g$ is an injective map of \mathbb{Z}^{+}into T. Consider $s_{n} \in T$, the $n \in I$ then we can write $a_{k}=n$ for some k . Thus

$$
(f \circ g)(k)=f(g(k))=f\left(a_{k}\right)=f(n)=s_{n} .
$$

Also $f \circ g$ is surjective. Thus $f \circ g$ is a bijective of \mathbb{Z}^{+}onto T. Then T is countable.

Theorem 2.20. The rational number set \mathbb{Q} is countable.

Proof Exercise.

Theorem 2.21 (Dedekind's Theorem). A set S is infinite iff S is cardinally equivalent to a proper subset of itself.

Proof. The proof is left to be an exercise. The following steps outline a proof of Dedekind's theorem

1. Every countable (denumerable) set is equivalent to a proper subset of itself.
2. Every infinite set has a countable subset.
3. Every infinite set is equivalent to a proper subset of itself.
4. A finite set is not equivalent to any of its proper subsets.

We have already seen that $2 \mathbb{Z} \subseteq \mathbb{Z}$ and $2 \mathbb{Z} \sim \mathbb{Z}$. Furthermore, $(0,1) \subseteq \mathbb{R}$ and $(0,1) \sim \mathbb{R}$. By the theorem, \mathbb{Z} and \mathbb{R} are infinite.

Exercise

1. Prove that the rational number set \mathbb{Q} is countable.
2. Prove the Dedekind's theorem.

2.3 Intervals

Let a, b be real numbers so that $a<b$. We set

- $(a, b)=\{x \in \mathbb{R}: a<x<b\}$, we read "open interval from a to b ".
- $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$, we read "closed interval from a to b ".
$\left.\begin{array}{rl}{[a, b)} & =\{x \in \mathbb{R}: a \leq x<b\} \\ (a, b] & =\{x \in \mathbb{R}: a<x \leq b\}\end{array}\right\}$, we read "half open intervals from a to b ".
a and b are called the end points of these intervals. We also define unbounded intervals :
- $(a, \infty)=\{x \in \mathbb{R}: a<x\}$.
- $[a, \infty)=\{x \in \mathbb{R}: a \leq x\}$.
- $(-\infty, b)=\{x \in \mathbb{R}: x<b\}$.
- $(-\infty, b]=\{x \in \mathbb{R}: x \leq b\}$.
- $(-\infty, \infty)=\mathbb{R}$.

The interval $(0,1)$ is called the open unit interval, sometimes written I or U.
Remark. Every real number $x \in(0,1)$ can be expressed as an unending decimal

$$
0 . d_{1} d_{2} d_{3} \cdots d_{k} \cdots,
$$

where $d_{k} \in\{0,1,2, \cdots, 9\}$. This representation is unique except that a decimal ending in all zeroes

$$
\begin{equation*}
0 . d_{1} d_{2} d_{3} \cdots d_{k} 000 \cdots, \tag{2.3}
\end{equation*}
$$

$d_{k} \neq 0$ is equivalent to

$$
0 . d_{1} d_{2} d_{3} \cdots\left(d_{k}-1\right) 999 \cdots
$$

(Why?) To avoid ambiguity we will use only the form with an ending string of 0s. Conversely, every unending decimal as in (2.3) represents a real number $x \in(0,1)$.

Theorem 2.22 (Cantor's Theorem). The open unit interval $(0,1)$ is uncountable.

Proof.

1. $(0,1)$ is infinite.

Consider the map $f:(0,1) \longrightarrow\left(0, \frac{1}{2}\right)$ defined by

$$
f(x)=\frac{x}{2} .
$$

Clearly, f is a bijective function. So $(0,1)$ is cardinally equivalent to $\left(0, \frac{1}{2}\right)$. By Dedekind's Theorem $(0,1)$ is infinite.
2. $(0,1)$ is not countable. (Proof by contradiction.)

Suppose to the contrary that $(0,1)$ is countable. Then we can list the elements of $(0,1)$ as $x_{1}, x_{2}, x_{3}, \ldots$

Let x_{i} be expressed by an unending decimal :

$$
x_{i}=0 . d_{i 1} d_{i 2} d_{i 3} \cdots d_{i k} \cdots,
$$

where x_{i} is not ending in all 9 s . So this representation is unique. Write all these elements in $(0,1)$ in decimal representations as indicated above :

$$
\begin{aligned}
x_{1} & =0 . d_{11} d_{12} d_{13} \cdots d_{1 n} \cdots \\
x_{2} & =0 . d_{21} d_{22} d_{23} \cdots d_{2 n} \cdots \\
x_{3} & =0 . d_{31} d_{32} d_{33} \cdots d_{3 n} \cdots \\
& \vdots \\
x_{n} & =0 . d_{n 1} d_{n 2} d_{n 3} \cdots d_{n n} \cdots \\
& \cdots
\end{aligned}
$$

Define $y=0 . e_{1} e_{2} e_{3} \cdots e_{n} \cdots$ where

$$
e_{n}= \begin{cases}2 & \text { if } d_{n n}=1 \\ 1 & \text { if } d_{n n} \neq 1\end{cases}
$$

This is clear that $y \in(0,1)$. Since the $n^{\text {th }}$ digit of x_{n} and y are different $\left(d_{n n} \neq\right.$ $\left.e_{n}\right)$. Since y is different from all $x_{n}(n=1,2, \ldots)$ However $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ comprise all of elements of $(0,1)$ and we see that $y \neq x_{i}$. This means $y \notin$ $\left\{x_{1}, x_{2}, \ldots\right\}=(0,1)$ which contradicts to the fact that $y \in(0,1)$. Hence $(0,1)$ is not countable.

By all of above, $(0,1)$ is uncountable.

Theorem 2.23. Suppose A and B are countable then $A \cup B$ is countable.

Proof. By the countability of A and B, there exists bijections $f: A \longrightarrow \mathbb{Z}^{+}$and $g: B \longrightarrow \mathbb{Z}^{+}$. Define $h: A \cup B \longrightarrow \mathbb{Z}^{+}$by

$$
h(x)= \begin{cases}2 f(x)-1, & \text { if } x \in A \\ 2 g(x), & \text { if } x \in B, x \notin A .\end{cases}
$$

Then h is an injection from $A \cup B$ into \mathbb{Z}^{+}. Now $A \cup B$ and $h(A \cup B)$ are cardinally equivalent. By theorem 2.19, $h(A \cup B)$ is at most countable and by the cardinality $A \cup B$ must be countable. However, $A \subseteq A \cup B$ and A is infinite $\Rightarrow A \cup B$ is infinite. Then $A \cup B$ is countable.

Remark. Theorem 2.23 holds also if the word "countable" is replaced by "at most countable".

Let $\left\{A_{1}, A_{2}, \ldots, A_{n}, \ldots\right\}$ be an infinite collection of countable sets. Let

$$
S=\bigcup_{n=1}^{\infty} A_{n}
$$

be defined by

$$
x \in S \Leftrightarrow x \in A_{n} \text { for at least one } n \text {. }
$$

Theorem 2.24. Let $\left\{A_{1}, A_{2}, \ldots, A_{n}, \ldots\right\}$ be a countable collection of countable sets. Then $\bigcup_{n=1}^{\infty} A_{n}$ is countable.

Proof. (Compare to the proof of theorem 2.17.)
As each A_{n} is countable, we can list its elements

$$
A_{n}=\left\{x_{n 1}, x_{n 2}, x_{n 3}, \ldots, x_{n k}, \ldots\right\}
$$

List all elements in each set as follow :

Now we list all the elements of $\bigcup_{n=1}^{\infty} A_{n}$ by moving along the arrow beginning in the top-left corner. It may happen some $x_{i j}$ appear move that once, i.e. we may
have $x \in A_{n}$ and $x \in A_{m}$ for $m \neq n$. In this case, we list this x as it appears for the first time only. So $\bigcup_{n=1}^{\infty} A_{n}$ is a subset of the following list

$$
x_{11}, x_{21}, x_{12}, x_{13}, x_{22}, x_{31}, \ldots
$$

By theorem 2.19, $\bigcup_{n=1}^{\infty} A_{n}$ is at most countable. However, $A_{n} \in \bigcup_{n=1}^{\infty} A_{n}$ and A_{n} is infinite. Then $\bigcup_{n=1}^{\infty} A_{n}$ must be countable.

Exercise

1. Prove that closed interval $[0,1]$ is uncountable.
2. Prove that \mathbb{R} is uncountable.
3. Prove that the set of irrational numbers is uncountable.
4. Prove that the unit square $I \times I=\{(x, y): 0<x, y<1\}$ is uncountable.

Chapter 3

Sequences and Series

3.1 Sequences

3.1.1 Absolute Values

Definition 3.1 (Absolute Values). Let $x \in \mathbb{R}$. The absolute value of x is defined by

$$
|x|=\left\{\begin{array}{rr}
x, & x \geq 0 \\
-x, & x<0
\end{array}\right.
$$

Theorem 3.1 (Properties of the absolute value). Let $x, y \in \mathbb{R}, a>0$

1. $|x| \geq 0$
2. $|x|=0 \Longleftrightarrow x=0$
3. $|x||y|=|x y|$
4. $-|x| \leq x \leq|x|$
5. $|x| \leq a \Longleftrightarrow-a \leq x \leq a$
6. $|x|<a \Longleftrightarrow-a<x<a$
7. $|x| \geq a \Longleftrightarrow x \leq-a$ or $x \geq a$
8. $|x|>a \Longleftrightarrow x<-a$ or $x>a$
9. $|x+y| \leq|x|+|y|$ (triangle inequality)
10. $||x|-|y|| \leq|x-y|$ (second triangle inequality)

Proof. Item 1) - 3) : exercise
4. Case I $x \geq 0$

Then $|x|=x$. So $-|x| \leq x=|x|$. Thus $-|x| \leq x \leq|x|$.
Case II $x<0$

Then $|x|=-x$. So $-|x|=x \leq|x|$. Hence $-|x| \leq x \leq|x|$.
By the both cases, $-|x| \leq x \leq|x|$.
5. (\Rightarrow) Suppose that $|x| \leq a$ then $-|x| \geq-a$. By 4$),-a \leq-|x| \leq x \leq|x| \leq a$
(\Leftarrow) Suppose $-a \leq x \leq a$
(a) $x \geq 0$ then $|x|=x$, then $-a \leq|x|=x \leq a \Rightarrow|x| \leq a$.
(b) $x<0$ then $|x|=-x$, then $-a \leq-|x|=x \leq a \Rightarrow-a \leq-|x| \Rightarrow a \geq|x|$.

By both cases, $|x| \leq a$.
6. Similar to the proof of 5).
7. Case I $x>0$

Then $x=|x|>a$
Case II $x<0 \Rightarrow|x|=-x$
Then $-x=|x|>a \Rightarrow x<-a$
By both cases, $|x|>a \Rightarrow x>a$ or $x<-a$.
8. Similar to the proof of (7).
9. $|x+y| \leq|x|+|y|$ (triangle inequality) By 4.), we have

$$
\begin{aligned}
-|x| & \leq x \leq|x| \\
-|y| & \leq y \leq|y| \\
\Rightarrow-(|x|+|y|) & \leq x+y \leq|x|+|y|
\end{aligned}
$$

By the property 5.) (with $a=|x|+|y|$) we have

$$
|x+y| \leq|x|+|y| .
$$

10. $||x|-|y|| \leq|x-y|$ (Exercise)

Exercise

1. Prove theorem 3.1 for the items $1-3$ and the second triangle inequality.
2. Draw the graph of function $f(x)=\frac{|x|}{x}$, where $x \in \mathbb{R}$ and $x \neq 0$.

3.1.2 Sequences

Definition 3.2 (Sequences). A sequence is a function whose domain is the set of positive integers \mathbb{Z}^{+}(or set of natural numbers \mathbb{N})

Remark.

1. If s is a sequence, we set

$$
s_{n}=s(n), \quad n \in \mathbb{N} .
$$

s_{n} is called the n-th term of the sequence, and n is also called the index of the sequence.

We can write a sequence by the listing the elements of its range ordered by index :

$$
s=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\} \quad \text { or } \quad s=\left\{s_{n}\right\}_{n=1}^{\infty} \quad \text { or } \quad s=\left\{s_{n}\right\} .
$$

Indeed, there are many other ways to write a term of sequence.
2. Even the definition of sequence is defined on a national number set \mathbb{N}, it may sometimes define a sequence starting from some other numbers different from 1, e.g. $\left\{\frac{1}{n+4}\right\}_{n=-3}^{\infty},\left\{(-1)^{n}\right\}_{n=0}^{\infty},\left\{(n-8)^{2}\right\}_{n=5}^{\infty}$, etc.

Example 3.1. These are examples of writing sequences:

- The sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ can be also written as $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\}$
- The sequence $\{2 n\}_{n=1}^{\infty}$ can be also written as $\{2,4,6, \ldots, 2 n, \ldots\}$ or $s_{1}=$ $2, s_{2}=4, s_{3}=6, \ldots, s_{n}=2 n, \ldots$
- $\left\{(-1)^{n}+1\right\}_{n=1}^{\infty}$ We can write it as $\{0,2,0,2,0, \ldots\}$
- $\left\{(1+1 / n)^{n}\right\}_{n=1}^{\infty}$ It is equivalent to $\{2,2.25,2.37 \dot{0} 3 \dot{7}, \ldots\}$
- $\left\{a_{n+1}=\frac{a_{n}}{2}+\frac{1}{a_{n}}\right\}_{n=1}^{\infty}$ where $a_{1}=1$. This sequence is defined recurrently.

It may be written by $\{1,1.5,1.41 \dot{6}, 1.414215 \ldots, \ldots\}$

3.1.3 Monotonicity

Definition 3.3 (Monotonicity). Let $s=\left\{s_{n}\right\}$ be a sequence. We say that

- s is increasing if $s_{n} \leq s_{n+1}, \forall n \in \mathbb{N}$
- s is strictly increasing if $s_{n}<s_{n+1}, \forall n \in \mathbb{N}$
- s is decreasing if $s_{n} \geq s_{n+1}, \forall n \in \mathbb{N}$
- s is strictly decreasing if $s_{n}>s_{n+1}, \forall n \in \mathbb{N}$

Any sequence with any of these properties is called monotone. By induction we can define definition 3.3 by

Definition 3.4 (Monotonicity (alternative definition)). Let $s=\left\{s_{n}\right\}$ be a sequence. We say that

- s is increasing if $s_{n} \leq s_{m}, \forall m>n \in \mathbb{N}$
- s is strictly increasing if $s_{n}<s_{m}, \forall m>n \in \mathbb{N}$
- s is decreasing if $s_{n} \geq s_{m}, \forall m>n \in \mathbb{N}$
- s is strictly decreasing if $s_{n}>s_{m}, \forall m>n \in \mathbb{N}$

Why? (exercise)

Example 3.2. Consider the following statements :

- Is the sequence $s=\left\{\frac{1}{n}\right\}$ monotone?

Since $s=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$, it appears that s is decreasing. Consider

$$
s_{n+1}-s_{n}=\frac{1}{n+1}-\frac{1}{n}=\frac{-1}{n(n+1)}<0, \forall n \in \mathbb{N}
$$

So $s_{n+1}<s_{n} \Rightarrow s$ is strictly decreasing.

- Is the sequence $\left\{2^{n}\right\}$ monotone?

Method I $s_{n+1}-s_{n}=2^{n+1}-2^{n}=2^{n}(2-1)=2^{n}>0 \Rightarrow s_{n+1}>s_{n}$ then s is strictly increasing.

Method II $\frac{s_{n+1}}{s_{n}}=\frac{2^{n+1}}{2^{n}}=2>1 \Rightarrow s_{n+1}>s_{n}$ strictly increasing.

- Is the sequence $\left\{\frac{n^{2}}{n^{2}-1}\right\}_{n=2}^{\infty}$ monotone?

The sequence can be listed by

$$
\frac{4}{3}, \frac{9}{8}, \frac{16}{15}, \frac{25}{24}, \cdots
$$

Since $s_{n}=\frac{n^{2}}{n^{2}-1}=\frac{n^{2}-1+1}{n^{2}-1}=1+\frac{1}{n^{2}-1}$ then

$$
\begin{aligned}
& s_{n+1}-s_{n}=\left(1+\frac{1}{(n+1)^{2}-1}\right)-\left(1+\frac{1}{n^{2}-1}\right) \\
&=\frac{1}{(n+1)^{2}-1}-\frac{1}{n^{2}-1} \\
&=\frac{\left(n^{2}-1\right)-\left(n^{2}+2 n\right)}{\left.\left.\left((n+1)^{2}-1\right)\right)\left(n^{2}-1\right)\right)} \\
&=\frac{-1-2 n}{\left.\left.\left((n+1)^{2}-1\right)\right)\left(n^{2}-1\right)\right)}<0 \\
& \Rightarrow \quad s_{n+1}<s_{n}
\end{aligned}
$$

This sequence is strictly decreasing.

- The constant sequence $s=\{c\}_{n=1}^{\infty}$ (c is a constant) has elements

$$
c, c, c, \ldots
$$

This sequence is both increasing and decreasing.

- Consider the sequence $\left\{\left\lfloor\frac{n}{2}\right\rfloor\right\}_{n=1}^{\infty}$. It this sequence monotone?

List the elements of this sequence :

$$
0,1,1,2,2,3,3,4,4,5,5, \ldots
$$

It appears that the sequence is increasing.

Definition 3.5 (Bounded sequences). Let $s=\left\{s_{n}\right\}_{n=1}^{\infty}$ be a sequence. We say that

- s is bounded above if there exists a real number M so that $s_{n} \leq M \forall n \in \mathbb{N}$.
- s is bounded below if there exists a real number m so that $s_{n} \geq m \forall n \in \mathbb{N}$.
- s is bounded if it is bounded above and bounded below.
- s is unbounded if it is not bounded.

Remark. These definitions are not really new. We have discussed the definition of boundedness of sets in definition 2.1 (page 35).

Theorem 3.2. A sequence $\left\{s_{n}\right\}$ is bounded if and only if there exists a real number M such that

$$
\left|s_{n}\right| \leq M, \quad \forall n \in \mathbb{N}
$$

Proof. Exercise.
Example 3.3. Consider the following sequences

- The sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ is bounded since $0<\frac{1}{n}<1 \forall n \in \mathbb{N}$.
- $\left\{n^{2}\right\}_{n=1}^{\infty}$ This sequence is bounded below, as $0<n^{2} \forall n$ but not bounded above.
- $\left\{(-1)^{n} n^{2}\right\}_{n=1}^{\infty}$ This sequence is not rather bounded below nor bounded above. It is unbounded.

Exercise

1. Consider the following sequences. Determine that whether they are increasing, strictly increasing, decreasing, strictly decreasing, bounded or not.
(a) $\left\{2^{n}-n^{2}\right\}_{n=1}^{\infty}$
(b) $\left\{2^{n}-n^{2}\right\}_{n=4}^{\infty}$
(e) $\left\{\frac{\sin n}{n}\right\}_{n=1}^{\infty}$
(c) $\left\{\frac{n^{2}-1}{n^{2}}\right\}_{n=1}^{\infty}$
(f) $\left\{\frac{2^{n}}{n}\right\}_{n=1}^{\infty}$
(d) $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty}$
(g) $\left\{\sin ^{2}(n)+\cos ^{2}(n)\right\}_{n=1}^{\infty}$
2. Prove theorem 3.2
3. If $s=\left\{s_{n}\right\}_{n=1}^{\infty}$ and $t=\left\{t_{n}\right\}_{n=1}^{\infty}$ are sequences, then the sum $s+t$ is the sequence whose n-th term is $s_{n}+t_{n}$. That is

$$
s+t=\left\{s_{n}+t_{n}\right\}_{n=1}^{\infty}
$$

Similarly, the difference, product and quotient are given by

$$
\begin{aligned}
s-t & =\left\{s_{n}-t_{n}\right\}_{n=1}^{\infty} \\
s t & =\left\{s_{n} t_{n}\right\}_{n=1}^{\infty} \\
\bar{s} & =\left\{\frac{s_{n}}{t_{n}}\right\}_{n=1}^{\infty} \quad \text { provided } t_{n} \neq 0 \text { for } n \in \mathbb{Z}^{+}
\end{aligned}
$$

Prove or disprove the following statements.
(a) if s and t are both increasing, then so is their sum.
(b) if s and t are both increasing, then so is their difference.
(c) if s and t are both increasing, then so is their product.
(d) if s and t are both increasing, then so is their quotient.
(e) if s and t are both increasing sequences of positive numbers, then so is their product.
(f) if s and t are both increasing sequences of positive numbers, then so is their quotient.
(g) if s and t are both bounded, then so is their difference.
(h) if s and t are both bounded sequences of positive numbers, then so is their product.
(i) if s and t are both bounded sequences of positive numbers, then so is their quotient.

3.2 Subsequences

Suppose, we are given a sequence $s=\left\{s_{n}\right\}_{n=1}^{\infty}$ whose elements are listed as follows:

$$
s_{1}, s_{2}, s_{3}, \ldots, s_{n}, \ldots
$$

We now pick a subset of this set by choosing values for the index :

$$
n_{1}<n_{2}<n_{3}<\cdots<n_{k}<\cdots
$$

Define a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ by $t_{k}=s_{n_{k}}$. We also write this sequence as $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$ and call it a subsequence of $s=\left\{s_{n}\right\}_{n=1}^{\infty}$

Example 3.4. Let $s=\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ which can be written as

$$
s=\left\{\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}
$$

1. Choose $n_{1}=2, n_{2}=4, n_{3}=6, \ldots, n_{k}=2 k, \ldots$ and we get the subsequence

$$
\left\{t_{k}\right\}_{k=1}^{\infty}=\left\{s_{2 k}\right\}_{k=1}^{\infty}=\left\{\frac{1}{2 k}\right\}_{k=1}^{\infty}=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \ldots\right\}
$$

2. Another sequence is $n_{1}=5, n_{2}=6, n_{3}=7, \ldots, n_{k}=k+4, \ldots$ This sequence is obtained by removing the first few elements of s. It is called the tail of s.

$$
\left\{t_{k}\right\}_{k=1}^{\infty}=\left\{s_{k+4}\right\}_{k=1}^{\infty}=\left\{\frac{1}{k+4}\right\}_{k=1}^{\infty}=\left\{s_{n}\right\}_{n=5}^{\infty}=\left\{\frac{1}{n}\right\}_{n=5}^{\infty}=\left\{\frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \ldots\right\}
$$

Remark. In general, if $s=\left\{s_{n}\right\}_{n=1}^{\infty}$ is a sequence and if $p \in \mathbb{N}$ is any natural number then $t=\left\{s_{n}\right\}_{n=p}^{\infty}$ is called the tail of $s=\left\{s_{n}\right\}_{n=1}^{\infty}$.
3. Let $s=\left\{n+(-1)^{n} n\right\}_{n=1}^{\infty}=\{0,4,0,6,0,8, \ldots\}$. Consider

$$
t=\left\{s_{2 k-1}\right\}_{k=1}^{\infty}=\left\{(2 k-1)+(-1)^{2 k-1}(2 k-1)\right\}_{k=1}^{\infty}=\{0\}_{k=1}^{\infty}
$$

4. Let $s=\left\{(-1)^{n} n\right\}_{n=1}^{\infty}=\{-1,2,-3,4,-5,6, \ldots\}$. Consider

$$
t=\left\{s_{2 k}\right\}_{k=1}^{\infty}=\left\{(-1)^{2 k}(2 k)\right\}_{k=1}^{\infty}=\{2 k\}_{k=1}^{\infty}=\{2,4,6,8, \ldots\}
$$

This subsequence t is strictly increasing where sequence s is not.

Exercise

1. Let s be the set of real numbers. Prove or disprove the following statements.
(a) If s is finite then s contains a largest element (which is the maximum of s).
(b) If s is infinite and bounded then s need not to have a largest element.
2. Given $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{n_{k}\right\}_{k=1}^{\infty}$, find a formula for the k-th term of the subsequence $t=\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$, and compute t_{1}, t_{2} and t_{3}.
(a) $s_{n}=\frac{1}{n} ; n_{k}=4 k+3$
(b) $s_{n}=(-1)^{n+1} n ; n_{k}=3 k$
(c) $s_{n}=\frac{(-1)^{n+1}}{n^{2}} ; n_{k}=2 k-1$
(d) $s_{n}=\left\{\begin{array}{ll}n^{2} & \text { for } n \text { even } \\ 0 & \text { for } n \text { odd }\end{array} ; n_{k}=2 k\right.$
(e) $s_{n}=\left\{\begin{array}{ll}n^{2} & \text { for } n \text { even } \\ 0 & \text { for } n \text { odd }\end{array} ; n_{k}=2 k+1\right.$
3. Prove the following statements
(a) A subsequence of an increasing sequence is increasing.
(b) A subsequence of a bounded sequence is bounded.
(c) If t is a subsequence of s and u is a subsequence of t, then u is a subsequence of s.

3.3 Null sequences

Consider the sequence $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots, \frac{1}{n^{2}}, \ldots$ which can be written as

$$
s=\left\{\frac{1}{n^{2}}\right\}_{n=1}^{\infty}
$$

As n gets larger and larger, the term $\frac{1}{n^{2}}$ of the sequence come closer and closer to 0.

Example 3.5. Consider sequence $s=\left\{s_{n}=\frac{1}{n^{2}}\right\}_{n=1}^{\infty}$.

- Find all terms s_{n} which $s_{n}=\frac{1}{n^{2}}<\frac{1}{100}$: Consider

$$
\begin{aligned}
\frac{1}{n^{2}} & <\frac{1}{100} \\
n^{2} & >100 \\
n & >10
\end{aligned}
$$

That is if $n=11,12,13, \ldots$ then $\frac{1}{n^{2}}<\frac{1}{100}$.

- Find all terms s_{n} which $\frac{1}{n^{2}}<0.0001$: Consider

$$
\begin{aligned}
\frac{1}{n^{2}} & <0.0001 \\
n^{2} & >\frac{1}{0.0001}=10000 \\
n & >100
\end{aligned}
$$

That is if $n=101,102,103, \ldots$ then $\frac{1}{n^{2}}<0.0001$.

- Given $\varepsilon>0$, find all terms s_{n} which $\frac{1}{n^{2}}<\varepsilon$:

$$
\begin{aligned}
\frac{1}{n^{2}} & <\varepsilon \\
n^{2} & >\frac{1}{\varepsilon} \\
n & >\sqrt{\frac{1}{\varepsilon}}
\end{aligned}
$$

Applying corollary 2.11 (page 44) shows that there must exist $N \in \mathbb{N}$ so that $N>\sqrt{\frac{1}{\varepsilon}}$. So if $n \geq N$, we have

$$
\frac{1}{n^{2}} \leq \frac{1}{N^{2}}<\varepsilon
$$

Definition 3.6 (Null sequences). A sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is null if for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ so that $\left|s_{n}\right|<\varepsilon$ for all $n \geq N$.

Figure 3.1: When $n>N,\left|s_{n}\right|<\varepsilon$

Example 3.6. These are examples of null sequences and not null sequence.

1. $\left\{\frac{(-1)^{n}}{\sqrt{n}}\right\}_{n=1}^{\infty}$ is null.

Here $s_{n}=\frac{(-1)^{n}}{\sqrt{n}}$. Given $\varepsilon>0$, we must find $N \in \mathbb{N}$ so that $\left|s_{n}\right|<\varepsilon$ for $n \geq N$.

$$
\begin{aligned}
\left|s_{n}\right|<\varepsilon \Rightarrow\left|\frac{(-1)^{n}}{\sqrt{n}}\right| & <\varepsilon \\
\frac{1}{\sqrt{n}} & <\varepsilon \\
\sqrt{n} & >\frac{1}{\varepsilon} \\
n & >\frac{1}{\varepsilon^{2}}
\end{aligned}
$$

So pick $N \in \mathbb{N}$ so that $N>\frac{1}{\varepsilon^{2}}$ (By Archimedian property) then if $n \geq N$ we have $n \geq N>\frac{1}{\varepsilon^{2}}$ so that going backward

$$
\left|\frac{(-1)^{n}}{\sqrt{n}}\right|<\varepsilon
$$

thus $\left\{\frac{(-1)^{n}}{\sqrt{n}}\right\}_{n=1}^{\infty}$ is a null sequence.
2. The sequence $\left\{\frac{3 n^{2}-2}{2 n^{3}+4 n}\right\}_{n=1}^{\infty}$ is a null sequence.

Proof.

$$
\begin{align*}
\left|\frac{3 n^{2}-2}{2 n^{3}+4 n}\right| & =\frac{3 n^{2}-2}{2 n^{3}+4 n}, \quad \forall n=1,2,3, \ldots \\
& <\frac{3 n^{2}}{2 n^{3}+4 n} \\
& <\frac{3 n^{2}}{2 n^{3}}=\frac{3}{2 n} \tag{3.1}
\end{align*}
$$

Given $\varepsilon>0$, we want $\left|s_{n}\right|<\varepsilon$. By equation (3.1), it is enough to make $\frac{3}{2 n}<\varepsilon \Rightarrow n>\frac{3}{2 \varepsilon}$. Choose $N<\frac{3}{2 \varepsilon}$ so if $n \geq N$ then by equation (3.1)

$$
\left|s_{n}\right|<\frac{3}{2 n} \leq \frac{3}{2 N} \leq \frac{3}{2\left(\frac{3}{2 \varepsilon}\right)}=\varepsilon
$$

This shows that $\left\{s_{n}\right\}$ is a null sequence.
3. Consider the sequence $\left\{\frac{n^{2}+1}{2 n^{3}-n}\right\}_{n=1}^{\infty}$

Claim : This is a null sequence.
Proof :

$$
\begin{equation*}
\left|s_{n}\right|=\left|\frac{n^{2}+1}{2 n^{3}-n}\right|=\frac{n^{2}+1}{2 n^{3}-n} \leq \frac{n^{2}+n^{2}}{2 n^{3}-n}=\frac{2 n^{2}}{2 n^{3}-n} \leq \frac{2 n^{2}}{2 n^{3}-n^{3}}=\frac{2}{n} \tag{3.2}
\end{equation*}
$$

Given $\varepsilon>0$, we want $\left|s_{n}\right|<\varepsilon$. By equation (3.2) it is enough to make $\frac{2}{n}<\varepsilon \Rightarrow n>\frac{2}{\varepsilon}$.
Choose $N \in \mathbb{N}$ with $N>\frac{2}{\varepsilon}$. By equation (3.2) if $n \geq N \Rightarrow n \geq N>\frac{2}{\varepsilon}$ so that $\left|s_{n}\right|<\frac{2}{n}<\frac{2}{\frac{2}{\varepsilon}}=\varepsilon$ thus the sequence is null.
4. Consider the sequence $\left\{\frac{n^{2}+1}{n^{2}+4 n}\right\}_{n=1}^{\infty}$

Claim : This is not a null sequence.

Proof :

$$
\begin{equation*}
\left|s_{n}\right|=\left|\frac{n^{2}+1}{n^{2}+4 n}\right|=\frac{n^{2}}{n^{2}+4 n} \geq \frac{n^{2}}{n^{2}+4 n^{2}}=\frac{n^{2}}{5 n^{2}}=\frac{1}{5}, \quad \forall n \in \mathbb{N} . \tag{3.3}
\end{equation*}
$$

Choose $\varepsilon=\frac{1}{10}$ then $\left|s_{n}\right|>\frac{1}{5}>\frac{1}{10}=\varepsilon$. So we can find no n with $\left|s_{n}\right|<\varepsilon$.
Thus $\left\{s_{n}\right\}$ is not a null sequence.
Theorem 3.3. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a null sequence, then $\left\{-s_{n}\right\}_{n=1}^{\infty}$ is also a null sequence.
Proof. Given $\varepsilon>0$ then there must exists $N \in \mathbb{N}$ so that

$$
\left|s_{n}\right|<\varepsilon, \quad n \geq N
$$

Also $\left|-s_{n}\right|=\left|s_{n}\right|<\varepsilon, n \geq N$. This shows that $\left\{-s_{n}\right\}_{n=1}^{\infty}$ is also a null sequence.
Theorem 3.4. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ are null sequences, then $\left\{s_{n}+t_{n}\right\}_{n=1}^{\infty}$ is also a null sequence.

Proof.

- Discussion : We want $\left|s_{n}+t_{n}\right|<\varepsilon=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}$. This holds surely :

$$
\left|s_{n}\right|<\frac{\varepsilon}{2} \quad \text { and } \quad\left|t_{n}\right|<\frac{\varepsilon}{2} .
$$

- Real proof : Let $\varepsilon>0$ be given.

Because $\left\{s_{n}\right\}$ is null, there exists $N_{s} \in \mathbb{N}$ so that $\left|s_{n}\right|<\frac{\varepsilon}{2}, \forall n \geq N_{s}$.
Similarly, as $\left\{t_{n}\right\}$ is null, there exists $N_{t} \in \mathbb{N}$ so that $\left|s_{n}\right|<\frac{\varepsilon}{2}, \forall n \geq N_{t}$.
Set $N=\max \left(N_{s}, N_{t}\right)$ then if $n \geq N$

$$
\left|s_{n}+t_{n}\right| \leq\left|s_{n}\right|+\left|t_{n}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Example 3.7. $\left\{\frac{12 n^{4}-2 n^{2}+6}{n\left(3 n^{2}+4\right)\left(3 n^{2}-1\right)}\right\}_{n=1}^{\infty}$
Since $\frac{12 n^{4}-2 n^{2}+6}{n\left(3 n^{2}+4\right)\left(3 n^{2}-1\right)}=\frac{3 n^{2}-2}{3 n^{3}+4 n}+\frac{n^{2}+1}{3 n^{3}-n}$ and by examples 3.6. 2 and 3.6. 3 which show that $\left\{\frac{3 n^{2}-2}{3 n^{3}+4 n}\right\}$ and $\left\{\frac{n^{2}+1}{3 n^{3}-n}\right\}$ are null, then $\left\{\frac{12 n^{4}-2 n^{2}+6}{n\left(3 n^{2}+4\right)\left(3 n^{2}-1\right)}\right\}_{n=1}^{\infty}$ is null.

Corollary 3.5. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ are null sequences, then $\left\{s_{n}-t_{n}\right\}_{n=1}^{\infty}$ is also a null sequence.

Proof. Exercise.

Theorem 3.6. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is bounded and $\left\{t_{n}\right\}_{n=1}^{\infty}$ is a null sequence, then $\left\{s_{n} t_{n}\right\}_{n=1}^{\infty}$ is also a null sequence.

Proof.

- Discussion : We want : $\left|s_{n} t_{n}\right|<\varepsilon \Rightarrow\left|s_{n}\right|\left|t_{n}\right|<\varepsilon$. This is true if $\left|s_{n}\right|<M$ and $\left|t_{n}\right|<\frac{\varepsilon}{M}$
- Real Proof : Let $\varepsilon>0$ be given. Because $\left\{s_{n}\right\}$ is bounded, then there exists $M>0$ so that $\left|s_{n}\right|<M$ for $n=1,2,3, \ldots$

Because $\left\{t_{n}\right\}$ is a null sequence (with $\frac{\varepsilon}{M}$ instead of ε), then there exists $N \in \mathbb{N}$ so that

$$
\left|t_{n}\right|<\frac{\varepsilon}{M}, \quad \forall n \geq N
$$

Thus

$$
\left|s_{n} t_{n}\right|=\left|s_{n}\right|\left|t_{n}\right|<M \frac{\varepsilon}{M}=\varepsilon, \quad \forall n \geq N
$$

$\Rightarrow\left\{s_{n} t_{n}\right\}$ is a null sequence.
Example 3.8. Consider sequence $\left\{\frac{\sin n}{n^{2}}\right\}_{n=1}^{\infty}$.
$\frac{\sin n}{n^{2}}=\sin n \cdot \frac{1}{n^{2}}$. Since $|\sin n|<1, \forall n$ then $\{\sin n\}$ is a bounded sequence and we have already seen $\left\{\frac{1}{n^{2}}\right\}$ is null, then by the theorem $\left\{\frac{\sin n}{n^{2}}\right\}$ is null.

Corollory 3.7. If $\left\{t_{n}\right\}_{n=1}^{\infty}$ is null and $\{c\}_{n=1}^{\infty}$ is a constant sequence, then $\left\{c t_{n}\right\}_{n=1}^{\infty}$ is also a null sequence.

Proof. Exercise.

Theorem 3.8. Every null sequence is bounded.

Proof. Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be null. Choose $\varepsilon=1$. As $\left\{s_{n}\right\}$ is null, $\exists N \in \mathbb{N}$ so that $\left|s_{n}\right|<1, \forall n \geq N$. Set $M=\max \left(\left|s_{1}\right|,\left|s_{2}\right|, \ldots,\left|s_{N-1}\right|, 1\right)$ then $\left|s_{n}\right| \leq M, \forall n$. Thus by theorem 3.2, $\left\{s_{n}\right\}_{n=1}^{\infty}$ is bounded.

Corollory 3.9. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ are null, then $\left\{s_{n} t_{n}\right\}_{n=1}^{\infty}$ is also a null sequence.

Proof. Exercise.
Theorem 3.10 (Squeeze Theorem). If $\left\{r_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ are null and $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a sequence with $r_{n} \leq s_{n} \leq t_{n}, \forall n$ then $\left\{s_{n}\right\}_{n=1}^{\infty}$ is also null.

Proof. Let $\varepsilon>0$ be given. Since $\left\{t_{n}\right\}$ is null, $\exists N_{t} \in \mathbb{N}$ so that

$$
\begin{equation*}
s_{n} \leq t_{n} \leq\left|t_{n}\right|<\varepsilon \quad \forall n \geq N_{t} \tag{3.4}
\end{equation*}
$$

Since $\left\{r_{n}\right\}$ is null, by theorem $3.3\left\{-r_{n}\right\}$ is also null, then $\exists N_{r} \in \mathbb{N}$ so that

$$
\begin{equation*}
-s_{n} \leq r_{n} \leq\left|-r_{n}\right|=\left|r_{n}\right|<\varepsilon \quad \forall n \geq N_{r} \tag{3.5}
\end{equation*}
$$

Since $\left|s_{n}\right|=s_{n}$ or $\left|s_{n}\right|=-s_{n}$, by combining inequality (3.4) and (3.5)

$$
\left|s_{n}\right|<\varepsilon, \forall n \geq N,
$$

where $N=\max \left(N_{t}, N_{r}\right)$. Hence $\left\{s_{n}\right\}$ is null.

Exercise

1. Prove corollary 3.5.
2. Prove corollary 3.7.
3. Prove corollary 3.9.
4. Prove that $\left\{s_{n}\right\}_{n=1}^{\infty}$ is null if and only if $\left\{\left|s_{n}\right|\right\}_{n=1}^{\infty}$ is null.
5. Prove that if $k>0$ is a constant then $\left\{\frac{1}{n^{k}}\right\}_{n=1}^{\infty}$ is null.
6. Let $\{c\}_{n=1}^{\infty}$ be a constant sequence then $\{c\}_{n=1}^{\infty}$ is null if and only if $c=0$.

Theorem 3.11 (Bernoulli's inequality). If $s=1+p$ for some $p>0$, then $s^{n} \geq$ $1+n p$ for $n \in \mathbb{Z}^{+}$.

Proof. Exercise.

Definition 3.7 (Geometric Sequences). If r is any real number, then the sequence

$$
\left\{r^{n}\right\}_{n=1}^{\infty}
$$

is called the geometric sequence.

Theorem 3.12. If $|r|<1$, then the geometric sequence $\left\{r^{n}\right\}_{n=1}^{\infty}$ is null.

Proof.

- Case I : $0<r<1 \Rightarrow$ then $1<\frac{1}{r}$. By Bernoulli's inequality, if we write $\frac{1}{r}=1+p$ then

$$
\begin{aligned}
\left(\frac{1}{r}\right)^{n}=\frac{1}{r^{n}} & \geq 1+n p \\
\Rightarrow \quad r^{n} & \leq \frac{1}{1+n p} \\
& <\frac{1}{n p}=\frac{1}{p} \cdot \frac{1}{n}
\end{aligned}
$$

We have $0<r^{n}<\frac{1}{p} \cdot \frac{1}{n}$. Since $\left\{\frac{1}{p}\right\}$ is a constant sequence which is bounded and $\left\{\frac{1}{n}\right\}$ is a null sequence (exercise 5., page 74), by theorem 3.6, $\left\{\frac{1}{p} \cdot \frac{1}{n}\right\}$ is null. Since $\{0\}$ and $\left\{\frac{1}{p} \cdot \frac{1}{n}\right\}$ are null, by the squeeze theorem, $\left\{r^{n}\right\}_{n=1}^{\infty}$ is also null.

- Case II : $-1<r<0 \Rightarrow$ then $0<-r=|r|<1$. By case I., $\left\{|r|^{n}\right\}=\left\{\left|r^{n}\right|\right\}$ is null. By exercise 4. (page 74), $\left\{r^{n}\right\}$ is null.
- Case III: $r=0$. Clearly $\left\{r^{n}\right\}=\{0\}$ is null.

3.4 Convergent sequences

Recall null sequence :

Figure 3.2: Null sequence

The terms of the above sequence approach to zero.
We may also encounter the following situation :

Figure 3.3: Convergent sequence

The terms of the sequence approach to L. If we subtract L from each term, we obtain a null sequence $\left\{s_{n}-L\right\}$.

Definition 3.8 (Convergent Sequences). We say that a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ converges to the number L provided that the sequence $\left\{s_{n}-L\right\}_{n=1}^{\infty}$ is null, we write

$$
s_{n} \rightarrow L \quad \text { or } \quad \lim _{n \rightarrow \infty} s_{n}=L .
$$

The number L is called the limit of the sequence. If there exists a number L so that $s_{n} \rightarrow L$, then we say the sequence is convergent (or the sequence converges). Otherwise we say that the sequence is divergent (or the sequence diverges).

Example 3.9. Consider the following sequences:

- the constant sequence $\{c\}_{n=1}^{\infty}$ is convergent. In fact, $\{c-c\}_{n=1}^{\infty}=\{0\}_{n=1}^{\infty}$ is null. Thus the constant sequence $\{c\}$ converges to c.
- $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$

For very large $n, n \approx n+1 \Rightarrow \frac{n+1}{n} \approx \frac{n}{n}=1$. It looks like $\frac{n}{n+1} \rightarrow 1$.
Claim : $\left\{\frac{n}{n+1}-1\right\}_{n=1}^{\infty}$ is null.
Proof. Now $\frac{n}{n+1}-1=\frac{n-(n+1)}{n+1}=\frac{-1}{n+1}$.
Let $\varepsilon>0$ be given. Choose $N \in \mathbb{N}$ so that $N>\frac{1}{\varepsilon}$. If $n \geq N$ then

$$
\left|\frac{-1}{n+1}\right|=\frac{1}{n+1} \leq \frac{1}{N+1}<\varepsilon
$$

This shows that $\left\{\frac{n}{n+1}-1\right\}_{n=1}^{\infty}$ is null. That is $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$ converges to 1.

- $\left\{\frac{1}{n^{2}}\right\}_{n=1}^{\infty}$

By example 3.5 (page 69), we have seen that $\left\{\frac{1}{n^{2}}\right\}_{n=1}^{\infty}$ converges to 0 .
By definition 3.8, if the sequence converges to the number $L=0$, we get :
"The sequence $\left\{s_{n}\right\}$ converges to 0 (or $\lim _{n \rightarrow \infty} s_{n}=0$) provided that $\left\{s_{n}\right\}$ is null."
Also by definition of null sequence 3.6 (page 70)
"A sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is null if for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ so that $\left|s_{n}\right|<\varepsilon$ for all $n \geq N$."

Combining the two above statements we get :

Definition 3.9 (Alternative Definition of Convergent Sequences, The $\varepsilon-N$ Formulation). $\lim _{n \rightarrow \infty} s_{n}=L$ (or $s_{n} \rightarrow L$) if and only if, given $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $\left|s_{n}-L\right|<\varepsilon$ wherever $n \geq N$.

Example 3.10. $\lim _{n \rightarrow \infty} \frac{3 n^{2}+n+4}{6 n^{2}}=\frac{1}{2}$
Proof. Let $\varepsilon>0$ be given. We must find $N \in \mathbb{N}$ so that

$$
\left|\frac{3 n^{2}+n+4}{6 n^{2}}-\frac{1}{2}\right|<\varepsilon \quad \forall n \geq N
$$

Now

$$
\begin{equation*}
\left|\frac{3 n^{2}+n+4}{6 n^{2}}-\frac{1}{2}\right|=\left|\frac{3 n^{2}+n+4-3 n^{2}}{6 n^{2}}\right|=\left|\frac{n+4}{6 n^{2}}\right|=\frac{n+4}{6 n^{2}} \leq \frac{n+4 n}{6 n^{2}}=\frac{5 n}{6 n^{2}}=\frac{5}{6 n} \tag{3.6}
\end{equation*}
$$

Pick N such that $\frac{5}{6 N}<\varepsilon \Rightarrow \frac{6 N}{5}>\frac{1}{\varepsilon} \Rightarrow N>\frac{5}{6 \varepsilon}$
So if $n \geq N$ then, by inequality 3.6,

$$
\left|\frac{3 n^{2}+n+4}{6 n^{2}}-\frac{1}{2}\right|<\frac{5}{6 n} \leq \frac{5}{6 N}<\varepsilon .
$$

Theorem 3.13. The limit of a convergent sequence is unique.

Proof. Suppose $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a sequence and $s_{n} \rightarrow L_{1}$ and also $s_{n} \rightarrow L_{2}$.
This means that $\left\{s_{n}-L_{1}\right\}_{n=1}^{\infty}$ and $\left\{s_{n}-L_{2}\right\}_{n=1}^{\infty}$ are null. By corollary 3.5 (page 73) the difference of sequence

$$
\left\{\left(s_{n}-L_{1}\right)-\left(s_{n}-L_{2}\right)\right\}_{n=1}^{\infty}=\left\{L_{2}-L_{1}\right\}_{n=1}^{\infty}
$$

is also null.
Now $\left\{L_{2}-L_{1}\right\}_{n=1}^{\infty}$ is a constant null sequence. By exercise 6. page 74, $L_{2}-$ $L_{1}=0 \Rightarrow L_{2}=L_{1}$. Thus the limit is unique.

Exercise

1. Show that the sequence whose general term is given below converges to the indicated number L.
(a) $\frac{n+3}{n+4}, \quad L=1$
(d) $\left(1+\frac{1}{n}\right)^{3}, \quad L=1$
(b) $\frac{n}{n^{2}+1}, \quad L=0$
(e) $(-1)^{n} \frac{\pi}{n}, \quad L=0$
(c) $s_{n}=\left\{\begin{array}{ll}1 & \text { for } n \text { odd } \\ \frac{n+1}{n} & \text { for } n \text { even }\end{array}, \quad L=1\right.$
(f) $\frac{4 n^{2}-3}{3 n^{2}+4}, \quad L=\frac{4}{3}$
2. Show that the sequence whose general term is given below is divergent.
(a) $(-1)^{n} \frac{n}{n+1}$
(d) $n-\frac{1}{n}$
(b) $3 n+5$
(e) $s_{n}= \begin{cases}\frac{n+3}{n+4} & \text { for } n \text { odd } \\ \frac{n+3}{2 n+1} & \text { for } n \text { even }\end{cases}$
(c) $\cos \frac{n \pi}{2}$

Theorem 3.14. If a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ converges to L, the every subsequence converges to L also.

Proof. Let $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$ be a subsequence of $\left\{s_{n}\right\}_{n=1}^{\infty}$. So we have

$$
n_{1}<n_{2}<n_{3}<\ldots<n_{k}<\ldots
$$

Let $\varepsilon>0$ be given. As $s_{n} \rightarrow L$, there exists $N \in \mathbb{N}$ so that

$$
\left|s_{n}-L\right|<\varepsilon, \quad \forall n \geq N .
$$

Now pick $K \in \mathbb{N}$ so that $n_{K} \geq N$. So if $k \geq K \Rightarrow n_{k} \geq n_{K} \geq N$. Thus

$$
\left|s_{n_{k}}-L\right|<\varepsilon, \quad \forall k \geq K
$$

This shows that $s_{n_{k}} \rightarrow L$.

Remark. This theorem is often used to show that a sequence diverges.
Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be a sequence.

1. Suppose $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$ and $\left\{s_{n_{l}}\right\}_{l=1}^{\infty}$ are two subsequences of $\left\{s_{n}\right\}_{n=1}^{\infty}$, which have different limits,

$$
s_{n_{k}} \rightarrow L_{1} \quad \text { and } \quad s_{n_{l}} \rightarrow L_{2} \quad\left(L_{1} \neq L_{2}\right)
$$

Then sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ must be divergent by theorem 3.14. (Why?)
2. Suppose $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$ is a divergent subsequence then $\left\{s_{n}\right\}_{n=1}^{\infty}$ must be divergent also.

Example 3.11. These are two divergent sequences.

- $\left\{(-1)^{n}\right\}_{n=1}^{\infty}$

Consider its two subsequences $\left\{(-1)^{2 k}\right\}_{k=1}^{\infty}$ and $\left\{(-1)^{2 l-1}\right\}_{l=1}^{\infty}$. They are constant sequences

$$
\begin{array}{rll}
\left\{(-1)^{2 k}\right\}_{k=1}^{\infty}=\{1,1,1, \ldots\} & \Rightarrow & \lim _{k \rightarrow \infty}(-1)^{2 k}=1 \\
\left\{(-1)^{2 l-1}\right\}_{l=1}^{\infty}=\{-1,-1,-1, \ldots\} & \Rightarrow & \lim _{l \rightarrow \infty}(-1)^{2 l-1}=-1
\end{array}
$$

$\left\{(-1)^{n}\right\}_{n=1}^{\infty}$ has subsequences which converge to different limits then $\left\{(-1)^{n}\right\}_{n=1}^{\infty}$ is divergent.

- $\left\{n \sin \frac{n \pi}{2}\right\}_{n=1}^{\infty}$

Some first terms of the sequence are

$$
1,0,-3,0,5,0,-7,0,9,0,-11, \ldots
$$

Consider $s_{1}=1, s_{5}=5, s_{9}=9, \ldots, s_{n_{k}}=4 k-3, k=1,2,3, \ldots$ This subsequence $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$ is divergent. Then sequence $\left\{n \sin \frac{n \pi}{2}\right\}_{n=1}^{\infty}$ is also divergent.

Theorem 3.15. Every convergent sequence is bounded.

Proof. Suppose $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence with $s_{n} \rightarrow L$. By definition of convergent sequence, $\left\{s_{n}-L\right\}$ is null. Also by theorem 3.8 (page 73), every null sequence is bounded, i.e. there exists $M>0$ so that $\left|s_{n}-L\right|<M$ for all n. Then

$$
\left|s_{n}\right|=\left|\left(s_{n}-L\right)+L\right| \underset{\text { triangle inequality }}{\leq}\left|s_{n}-L\right|+|L| \leq M+|L| \leq \tilde{M}
$$

This shows that $\left\{s_{n}\right\}_{n=1}^{\infty}$ is bounded.
Remark. The converse of the statement is not true. $\left(\left\{s_{n}\right\}_{n=1}^{\infty}\right.$ is bounded \nRightarrow $\left\{s_{n}\right\}_{n=1}^{\infty}$ converges.) By example 3.11 (page 80), $\left\{(-1)^{n}\right\}_{n=1}^{\infty}$ is bounded but it does not converge.

Example 3.12. Is sequence $\{n\}_{n=1}^{\infty}$ convergent?
If sequence $\{n\}_{n=1}^{\infty}$ is convergent then it must be bounded. However, $\{n\}_{n=1}^{\infty}$ is unbounded (check!) thus it is not convergent.

Exercise

1. Show that if a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ has the property that $s_{2 k} \rightarrow L$ and $s_{2 k-1} \rightarrow$ L, then $s_{n} \rightarrow L$.
2. Let $A=\left\{M \mid\right.$ where $\left.\left|s_{n}\right|<M, \forall n\right\}$. Find the infimum of $A(\inf (A))$ where
(a) $s_{n}=\frac{\sin n}{n}$
(b) $s_{n}=\frac{4 n^{2}-3}{3 n^{2}+4}$
(c) $s_{n}= \begin{cases}\frac{n+3}{n+4} & \text { for } n \text { odd } \\ \frac{n+3}{2 n+1} & \text { for } n \text { even }\end{cases}$
(d) $s_{n}= \begin{cases}1 & \text { for } n \text { odd } \\ \frac{n+1}{n} & \text { for } n \text { even }\end{cases}$
(e) $s_{n}=n-\frac{1}{n}$

Theorem 3.16. If a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ has a positive limit, then eventually the terms of the sequence become all positive.

Proof. Suppose $s_{n} \rightarrow L>0$. Then as $L>0$, for $\varepsilon=L$, there exists $N \in \mathbb{N}$ so that

$$
\left|s_{n}-L\right|<L, \quad \forall n \geq N
$$

This means $-L<s_{n}-L<L$. Add L to the inequality,

$$
0<s_{n}<2 L, \quad \Rightarrow \quad s_{n}>0 \quad \forall n \geq N
$$

Corollary 3.17. If a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ has a negative limit, then eventually the terms of the sequence become all negative.

Proof. Exercise.
We can reformulate these two theorems:

Corollary 3.18. Let $s=\left\{s_{n}\right\}_{n=1}^{\infty}$ be a sequence.

1. If there exists N so that $s_{n} \geq 0$ for all $n \geq N$, then s cannot have a negative limit.
2. If there exists N so that $s_{n} \leq 0$ for all $n \geq N$, then s cannot have a positive limit.

Theorem 3.19. Let $s=\left\{s_{n}\right\}_{n=1}^{\infty}$. If $\lim _{n \rightarrow \infty} s_{n}=L$, then $\lim _{n \rightarrow \infty}\left|s_{n}\right|=|L|$.
Proof. Let $\varepsilon>0$ be given. As $s_{n} \rightarrow L$, there exists $N \in \mathbb{N}$ so that

$$
\left|s_{n}-L\right|<\varepsilon, \quad \forall n \geq N
$$

By the second triangle inequality $\left|\left|s_{n}\right|-|L|\right| \leq\left|s_{n}-L\right|<\varepsilon, \forall n \geq N$. Thus $\left|s_{n}\right| \rightarrow|L|$.

Remark. The converse of the statement is not true.

Example 3.13.

- $\lim _{n \rightarrow \infty} \frac{1-n}{n}=-1$. (check!)

By theorem 3.19 (page 82), $\lim _{n \rightarrow \infty}\left|\frac{1-n}{n}\right|=\lim _{n \rightarrow \infty} \frac{n-1}{n}=1$.

- Consider $s=\left\{(-1)^{n}\right\}_{n=1}^{\infty}$. We can see that $\left|s_{n}\right|=\left|(-1)^{n}\right|=1, \forall n$ and $\left|s_{n}\right| \rightarrow 1$, while it has been shown in example 3.11 that s is a divergent sequence.

Theorem 3.20. Suppose, $s_{n} \geq 0$ for all n, and $\lim _{n \rightarrow \infty} s_{n}=L$ then $\lim _{n \rightarrow \infty} \sqrt{s_{n}}=\sqrt{L}$.

Proof By the corollary 3.18 (page 82), L must be greater than or equal to zero.

- Case I. $L=0$

Let $\varepsilon>0$ be given. Since $s_{n} \rightarrow 0$, there exists $N \in \mathbb{N}$ so that

$$
\begin{aligned}
\left|s_{n}-0\right|=\left|s_{n}\right|=s_{n} & <\varepsilon^{2}, \quad \forall n \geq N \\
\sqrt{s_{n}} & <\sqrt{\varepsilon^{2}}=\varepsilon \\
\left|\sqrt{s_{n}}-0\right| & <\varepsilon
\end{aligned}
$$

- Case II. $L>0$

- Discussion.

$$
\begin{aligned}
\left|\sqrt{s_{n}}-\sqrt{L}\right| & <\varepsilon \\
\frac{\left|\sqrt{s_{n}}-\sqrt{L}\right|\left|\sqrt{s_{n}}+\sqrt{L}\right|}{\left|\sqrt{s_{n}}+\sqrt{L}\right|} & <\varepsilon \\
\left|\sqrt{s_{n}}-\sqrt{L}\right|\left|\sqrt{s_{n}}+\sqrt{L}\right|=\left|s_{n}-L\right| & <\varepsilon\left|\sqrt{s_{n}}+\sqrt{L}\right|
\end{aligned}
$$

- Real Proof. Let $\varepsilon>0$ be given. There exists $N \in \mathbb{N}$ so that $\left|s_{n}-L\right|<$
$\varepsilon \sqrt{L}$ for all $n \geq N$.

$$
\begin{aligned}
\left|\sqrt{s_{n}}-\sqrt{L}\right| & =\frac{\left|\sqrt{s_{n}}-\sqrt{L}\right|\left|\sqrt{s_{n}}+\sqrt{L}\right|}{\left|\sqrt{s_{n}}+\sqrt{L}\right|} \\
& =\frac{\left|s_{n}-L\right|}{\left|\sqrt{s_{n}}+\sqrt{L}\right|} \\
& <\frac{\left|s_{n}-L\right|}{\sqrt{L}}<\frac{\varepsilon \sqrt{L}}{\sqrt{L}}=\varepsilon \quad \forall n \geq N
\end{aligned}
$$

The two above cases show that $\sqrt{s_{n}} \rightarrow \sqrt{L}$.
The following theorem is important in the discussion of series.
Theorem 3.21. $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.
Proof. Since $n \geq 1$, we get $\sqrt[n]{n} \geq 1$ (check!). So we can write

$$
\begin{array}{rll}
\sqrt[n]{n} & = & 1+p_{n}, \quad p_{n} \geq 0 \\
n=(\sqrt[n]{n})^{n} \quad & =\quad\left(1+p_{n}\right)^{n} \\
& =1+\binom{n}{1} p_{n}+\binom{n}{2}\left(p_{n}\right)^{2}+\cdots+\binom{n}{n}\left(p_{n}\right)^{n} \\
\text { By binomial theorem } & \\
& =\quad 1+n p_{n}+\frac{n(n-1)}{2}\left(p_{n}\right)^{2}+\cdots+\left(p_{n}\right)^{n}
\end{array}
$$

Since each term of the right hand side of the equation is greater than or equal to zero then

$$
n \geq \frac{n(n-1)}{2}\left(p_{n}\right)^{2} \geq 0
$$

So the square root of p_{n} becomes

$$
0 \leq p_{n} \leq \sqrt{\frac{2}{n-1}}
$$

Since $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ is a null sequence thus $\left\{\frac{1}{n-1}\right\}_{n=2}^{\infty}$ is null also. By theorem 3.6 (page 73 .), $\left\{\sqrt{\frac{2}{n-1}}\right\}_{n=2}^{\infty}$ is a null sequence.

Since $0 \leq p_{n}=\sqrt[n]{n}-1 \leq \sqrt{\frac{2}{n-1}}$, by squeeze theorem (page 74), sequence $\left\{p_{n}=\sqrt[n]{n}-1\right\}_{n=1}^{\infty}$ is null. Thus

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}=1
$$

Remark. In this proof, we have used the fact that if we change or ignore the first terms in a sequence, convergence and limits are unaffected.

Theorem 3.22 (Squeeze theorem of limits). Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ be two sequences, and $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a sequence with

$$
r_{n} \leq s_{n} \leq t_{n} \quad \forall n
$$

If $\lim _{n \rightarrow \infty} r_{n}=\lim _{n \rightarrow \infty} t_{n}=L$ then $\lim _{n \rightarrow \infty} s_{n}=L$ also.
Proof. As $r_{n} \rightarrow L$ and $t_{n} \rightarrow L$, we know that

$$
\left\{r_{n}-L\right\}_{n=1}^{\infty} \quad \text { and } \quad\left\{t_{n}-L\right\}_{n=1}^{\infty}
$$

are both null sequence. Since $r_{n} \leq s_{n} \leq t_{n}, \forall n \Rightarrow \underbrace{r_{n}-L}_{\text {null }} \leq s_{n}-L \leq \underbrace{t_{n}-L}_{\text {null }}, \forall n$. By squeeze theorem (page 74), $s_{n}-L$ is a null sequence also. Thus

$$
s_{n} \rightarrow L
$$

Exercise

1. Prove corollary 3.17 (page 82).
2. Show that if a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ has the property that $s_{2 k} \rightarrow L$ and $s_{2 k-1} \rightarrow$ L, then $s_{n} \rightarrow L$.
3. Show that a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ converges to a number L if and only if, for every $m \in \mathbb{N}$, the tail $\left\{s_{n}\right\}_{n=m}^{\infty}$ converges to L.
4. The limit of a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ does not change if we change finitely many terms s_{n} of the sequence.
5. Show that if $a>0, \lim _{n \rightarrow \infty} \sqrt[n]{a}=1$. (Hint. Apply squeeze theorem to prove this statement.)

3.5 Cauchy Sequences

Definition 3.10 (Cauchy Sequence). A sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is called Cauchy if for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ so that

$$
\left|s_{n}-s_{m}\right|<\varepsilon, \quad \text { for all } n, m \geq N .
$$

Example 3.14. Sequence $\left\{\frac{n+2}{n}\right\}_{n=1}^{\infty}$ is Cauchy.
Let $\varepsilon>0$ be given. We want :

$$
\begin{aligned}
\left|s_{n}-s_{m}\right| & <\varepsilon \\
\left|\frac{n+2}{n}-\frac{m+2}{m}\right| & <\varepsilon \\
\left|\left(1+\frac{2}{n}\right)-\left(1+\frac{2}{m}\right)\right| & <\varepsilon \\
\left|\frac{2}{n}-\frac{2}{m}\right| & <\varepsilon
\end{aligned}
$$

Since $\left|\frac{2}{n}-\frac{2}{m}\right|=\left|\frac{2}{n}+\left(-\frac{2}{m}\right)\right| \leq\left|\frac{2}{n}\right|+\left|-\frac{2}{m}\right|=\left|\frac{2}{n}\right|+\left|\frac{2}{m}\right|=\frac{2}{n}+\frac{2}{m}$
The inequality $\left|\frac{2}{n}-\frac{2}{m}\right|<\varepsilon$ is true if $\frac{2}{n}<\frac{\varepsilon}{2}$ and $\frac{2}{m}<\frac{\varepsilon}{2}$, i.e

$$
n>\frac{4}{\varepsilon} \quad \text { and } \quad m>\frac{4}{\varepsilon}
$$

Choose $N \in \mathbb{N}$ so that $N>\frac{4}{\varepsilon}\left(\Rightarrow \frac{4}{N}<\varepsilon\right)$. Then if $m, n \geq N$, we have

$$
\left|s_{n}-s_{m}\right|=\left|\frac{2}{n}-\frac{2}{m}\right| \leq \frac{2}{n}+\frac{2}{m} \leq \frac{2}{N}+\frac{2}{N}=\frac{4}{N}<\frac{4}{\frac{4}{\varepsilon}}=\varepsilon
$$

This shows that $\left\{\frac{n+2}{n}\right\}_{n=1}^{\infty}$ is Cauchy.
Lemma 3.23. Every convergent sequence is Cauchy.

Proof. Suppose $\left\{s_{n}\right\}_{n=1}^{\infty}$ is convergent, say $s_{n} \rightarrow L$. Let $\varepsilon>0$ be given. Since $s_{n} \rightarrow L$, there exists $N \in \mathbb{N}$ so that

$$
\begin{array}{ll}
& \left|s_{n}-L\right|<\frac{\varepsilon}{2},
\end{array} \quad \forall n \geq N .
$$

Then

$$
\begin{aligned}
\left|s_{n}-s_{m}\right|=\left|\left(s_{n}-L\right)-\left(s_{m}-L\right)\right| & \leq\left|\left(s_{n}-L\right)\right|+\left|-\left(s_{m}-L\right)\right| \\
& =\left|s_{n}-L\right|+\left|s_{m}-L\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Lemma 3.24. Every Cauchy sequence is bounded.

Proof. As $\left\{s_{n}\right\}_{n=1}^{\infty}$ is Cauchy, for $\varepsilon=1$, there exists $N \in \mathbb{N}$ so that

$$
\left|s_{n}-s_{m}\right|<\varepsilon=1, \quad \text { for } m, n \geq N
$$

Choose $m=N$, so $\left|s_{n}-s_{N}\right|<1$ for all $n \geq N$.

$$
\left|s_{n}\right|=\left|s_{n}-s_{N}+s_{N}\right| \leq\left|s_{n}-s_{N}\right|+\left|s_{N}\right|<1+\left|s_{N}\right|, \quad \text { for } n \geq N .
$$

Set $M=\max \left\{\left|s_{1}\right|,\left|s_{2}\right|, \ldots,\left|s_{N-1}\right|,\left|s_{N}\right|+1\right\}$. Then for all $n \in \mathbb{N},\left|s_{n}\right| \leq M$. Thus $\left\{s_{n}\right\}_{n=1}^{\infty}$ is bounded.

Lemma 3.25. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is Cauchy and $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$ is a convergent subsequence, say $s_{n_{k}} \rightarrow L$, then $\left\{s_{n}\right\}_{n=1}^{\infty}$ itself converges to L.

Proof. Let $\varepsilon>0$ be given. As $\left\{s_{n}\right\}$ is Cauchy, there exits $N \in \mathbb{N}$ so that $\left|s_{n}-s_{m}\right|<\frac{\varepsilon}{2}, \forall m, n \geq N$. As $s_{n_{k}} \rightarrow L$, there exits $K \in \mathbb{N}$ so that $\left|s_{n_{k}}-L\right|<$ $\frac{\varepsilon}{2}, \forall k \geq K$.

Fix an index K_{1} so that $K_{1} \geq K$ and $n_{K_{1}} \geq N$. So if $n \geq N$,

$$
\begin{aligned}
\left|s_{n}-L\right| & =\left|s_{n}-s_{n_{K_{1}}}+s_{n_{K_{1}}}-L\right| \\
& \leq \underbrace{\left|s_{n}-s_{n_{K_{1}}}\right|}_{\text {Cauchy seq. }}+\underbrace{\left|s_{n_{K_{1}}}-L\right|}_{\text {convergent seq. }} \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

This shows that $s_{n} \rightarrow L$.

Theorem 3.26 (Cauchy Criterion). A sequence of real numbers converges if and only if it is Cauchy.

Proof. Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be a sequence.
(\Rightarrow) Suppose $\left\{s_{n}\right\}_{n=1}^{\infty}$ converges. By lemma 3.23 (page 86.), it is Cauchy.
(\Leftarrow) Suppose $\left\{s_{n}\right\}_{n=1}^{\infty}$ is Cauchy, by lemma 3.24 (page 87.), it is bounded. By the Bolzano-Weierstrass theorem $\left\{s_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$.

By lemma 3.25 (page 87.), the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ itself converges.

Remarks.

1. The notion of a Cauchy sequence is useful because it allows us to discuss convergent sequences without knowing their limit.
2. Theorem 3.26 does not hold if we work in the set \mathbb{Q} of rational numbers, while lemma 3.23, 3.24 and 3.25 hold (check!) because the BolzanoWeierstrass theorem does not hold in \mathbb{Q}.

Exercise

Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ be Cauchy sequences. Determine whether the following sequences are Cauchy or not.

1. $\left\{s_{n}+t_{n}\right\}$.
2. $\left\{s_{n}-t_{n}\right\}$.
3. $\left\{s_{n} t_{n}\right\}$.
4. $\left\{\frac{s_{n}}{t_{n}}\right\}$, where $t_{n} \neq 0, \forall n$.
[^3]The proof of this theorem will be discussed later (see the proof in page 105).

Theorem 3.27. Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ be convergent sequences, say

$$
\lim _{n \rightarrow \infty} s_{n}=L \quad \text { and } \quad \lim _{n \rightarrow \infty} t_{n}=M
$$

then $\left\{s_{n}+t_{n}\right\}_{n=1}^{\infty},\left\{s_{n}-t_{n}\right\}_{n=1}^{\infty}$ and $\left\{s_{n} t_{n}\right\}_{n=1}^{\infty}$ are convergent also and

1. $\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=L+M$.
2. $\lim _{n \rightarrow \infty}\left(s_{n}-t_{n}\right)=L-M$.
3. $\lim _{n \rightarrow \infty}\left(s_{n} t_{n}\right)=L M$.

Proof.

1. As $s_{n} \rightarrow L$ and $t_{n} \rightarrow M$, the sequences $\left\{s_{n}-L\right\}$ and $\left\{t_{n}-M\right\}$ are null. By theorem 3.4 (page 72.), the sum of these two null sequences are also null, i.e.

$$
\{\underbrace{\left(s_{n}-L\right)}_{\text {null }}+\underbrace{\left(t_{n}-M\right)}_{\text {null }}\}=\left\{\left(s_{n}+t_{n}\right)-(L+M)\right\}
$$

By the definition, it shows that $s_{n}+t_{n} \rightarrow L+M$.
2. Exercise.
3. Note that

$$
\begin{aligned}
s_{n} t_{n}-L M & =s_{n} t_{n}-t_{n} L+t_{n} L-L M \\
& =t_{n}\left(s_{n}-L\right)+L\left(t_{n}-M\right)
\end{aligned}
$$

Since t_{n} is convergent sequence then it is bounded (by theorem 3.15, page 81). As $\left\{s_{n}-L\right\}$ is null, $\left\{t_{n}\left(s_{n}-L\right)\right\}$ is null also (by theorem 3.6, page 73). As L is a constant, by corollary 3.7 (page 73.), $\left\{L\left(t_{n}-M\right)\right\}$ is a null sequence.

Since $\left\{s_{n} t_{n}-L M\right\}$ can be expressed as a sum of null sequences, then it is a null sequence also. This means $s_{n} t_{n} \rightarrow L M$.

Remark. This theorem may be expressed in the other way as:
If $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ are convergent sequences :

1. $\lim _{n \rightarrow \infty}\left(s_{n} \pm t_{n}\right)=\lim _{n \rightarrow \infty} s_{n} \pm \lim _{n \rightarrow \infty} t_{n}$.
2. $\lim _{n \rightarrow \infty} s_{n} t_{n}=\left(\lim _{n \rightarrow \infty} s_{n}\right)\left(\lim _{n \rightarrow \infty} t_{n}\right)$.

We want a similar theorem for sequences of quotients $\frac{s_{n}}{t_{n}}$. However, we have to be aware for the case that $t_{n}=0$ for some n or $t_{n} \rightarrow 0$.

Lemma 3.28. If $t_{n} \neq 0$ for all $n \in \mathbb{N}$ and $t_{n} \rightarrow M \neq 0$, then the sequence $\left\{\frac{1}{t_{n}}\right\}_{n=1}^{\infty}$ is bounded.

Proof. Since $t_{n} \rightarrow M$, we have $\left|t_{n}\right| \rightarrow|M|$ (theorem 3.15, page 81.). By the assumption $M \neq 0$, set $\varepsilon=\frac{|M|}{2}$. There exists $N \in \mathbb{N}$ so that $\| t_{n}|-|M||<$ $\frac{|M|}{2}, \forall n \geq N$ so

$$
\begin{aligned}
& -\frac{|M|}{2}<\left|t_{n}\right|-|M|<\frac{|M|}{2} \\
& \frac{|M|}{2}<\quad\left|t_{n}\right| \quad<3 \frac{|M|}{2}, \quad \forall n \geq N .
\end{aligned}
$$

Take reciprocals

$$
\frac{2}{|M|}>\frac{1}{\left|t_{n}\right|}>3 \frac{2}{|M|}
$$

Thus $\left|\frac{1}{t_{n}}\right|<\frac{2}{|M|}$ for all $n \geq N$.
Set $B=\max \left\{\left|\frac{1}{t_{1}}\right|,\left|\frac{1}{t_{2}}\right|, \ldots,\left|\frac{1}{t_{N-1}}\right|, \frac{2}{|M|}\right\}$ then $\left|\frac{1}{t_{n}}\right|<B+1$ for all $n \in \mathbb{N}$.
This shows that $\left\{\frac{1}{t_{n}}\right\}_{n=1}^{\infty}$ is bounded.

Theorem 3.29. Suppose $\lim _{n \rightarrow \infty} s_{n}=L$ and $\lim _{n \rightarrow \infty} t_{n}=M$. If $t_{n} \neq 0, \forall n$ and $M \neq 0$, then $\left\{\frac{s_{n}}{t_{n}}\right\}_{n=1}^{\infty}$ converges and $\lim _{n \rightarrow \infty} \frac{s_{n}}{t_{n}}=\frac{L}{M}$

Proof. Note that

$$
\begin{aligned}
\frac{s_{n}}{t_{n}}-\frac{L}{M} & =\frac{M s_{n}-t_{n} L}{t_{n} M} \\
& =\frac{1}{t_{n}}\left(\frac{M s_{n}-M L+M L-t_{n} L}{M}\right) \\
& =\frac{1}{t_{n}}\left(\frac{M\left(s_{n}-L\right)+\left(M-t_{n}\right) L}{M}\right) \\
& =\frac{1}{t_{n}}\left(\left(s_{n}-L\right)+\frac{L}{M}\left(M-t_{n}\right)\right) \\
& =\frac{1}{t_{n}}\left(\left(s_{n}-L\right)-\frac{L}{M}\left(t_{n}-M\right)\right)
\end{aligned}
$$

As $s_{n} \rightarrow L,\left\{s_{n}-L\right\}$ is null. As $t_{n} \rightarrow M,\left\{t_{n}-M\right\}$ and $\frac{L}{M}\left(t_{n}-M\right)$ are null. By the theorem on null sequence (page 72.), $\left\{\left(s_{n}-L\right)-\frac{L}{M}\left(t_{n}-M\right)\right\}_{n=1}^{\infty}$ is null. By lemma 3.28 (page 90.) $\left\{\frac{1}{t_{n}}\right\}_{n=1}^{\infty}$ is bounded so $\left\{\frac{1}{t_{n}}\left(\left(s_{n}-L\right)-\frac{L}{M}\left(t_{n}-M\right)\right)\right\}_{n=1}^{\infty}$ is also null. This means $\left\{\frac{s_{n}}{t_{n}}-\frac{L}{M}\right\}_{n=1}^{\infty}$ is null, so

$$
\frac{s_{n}}{t_{n}} \rightarrow \frac{L}{M} .
$$

Exercise

1. Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ be convergent sequences, say

$$
\lim _{n \rightarrow \infty} s_{n}=L \quad \text { and } \quad \lim _{n \rightarrow \infty} t_{n}=M
$$

Show that $\left\{s_{n}-t_{n}\right\}_{n=1}^{\infty}$ is convergent also and $\lim _{n \rightarrow \infty}\left(s_{n}-t_{n}\right)=L-M$.
2. Determine whether the given sequence converges; if it does find the limit.
(a) $\sqrt{\frac{n^{2}+4}{9 n^{2}+3}}$
(b) $\frac{1+3^{n}}{1+2^{n}}$
(c) $\frac{1+2^{n}}{3^{n}+2^{n}}$

3.6 Divergence to Infinity

Unbounded sequences are necessarily divergent (Theorem 3.15, page 81.) In this section we investigate two special types of unbounded sequences.

3.6.1 Positive Infinity

Definition 3.30. A sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ diverges to infinity if for every $B>0$ there exists $N \in \mathbb{N}$ so that $s_{n}>B$ for all $n \geq N$.

In this case we write

$$
\lim _{n \rightarrow \infty} s_{n}=\infty \quad \text { or } \quad s_{n} \rightarrow \infty
$$

Roughly speaking, this means we can make the eventual terms of the sequence as large as we wish $\left(s_{n}>B\right)$ by choosing n sufficiently large $(n \geq N)$.

Example 3.15. Consider the following sequences

- Sequence $\left\{s_{n}\right\}_{n=1}^{\infty}=\left\{n^{3}-2 n^{2}\right\}_{n=1}^{\infty}$ diverges to infinity.

Let $B>0$ be given. We want to find n so that $n^{3}-2 n^{2}>B \Rightarrow n^{2}(n-$ 2) $>B$. This is true if $n^{2}>B$ and $n-2 \geq 1$. So choose $N \in \mathbb{N}$ with $N>\max \{\sqrt{B}, 3\}$. If $n \geq N$ then $n^{3}-2 n^{2}=n^{2}(n-2) \geq N^{2}(N-2)>$ $\sqrt{(} B)^{2} \cdot 1=B$. Hence $n^{3}-2 n^{2}>B, \forall n \geq N$. This shows that $s_{n} \rightarrow \infty$.

- Sequence $\left\{s_{n}\right\}_{n=1}^{\infty}=\left\{n\left(1+(-1)^{n}\right)\right\}_{n=1}^{\infty}$.

The terms of sequence are

$$
0,4,0,8,0,12,0, \ldots
$$

This sequence is unbounded. However, it does not diverge to infinity, as infinitely many terms are zero.

Theorem 3.31. If $s_{n} \rightarrow \infty$ and $t_{n} \rightarrow \infty$ then

1. $s_{n}+t_{n} \rightarrow \infty$
2. $s_{n} \cdot t_{n} \rightarrow \infty$

Proof. Exercise.

Theorem 3.32. If $s_{n} \rightarrow \infty$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ is bounded then $s_{n}+t_{n} \rightarrow \infty$.

Proof. Exercise.
Since all convergent sequences are bounded then we get

Corollary 3.33. If $s_{n} \rightarrow \infty$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ is convergent then $s_{n}+t_{n} \rightarrow \infty$.

Proof. Exercise.

3.6.2 Negative Infinity

In a similar way, we define divergent to $-\infty$.

Definition 3.11. A sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ diverges to negative infinity if for every $B<0$ there exists $N \in \mathbb{N}$ so that $s_{n}<B$ for all $n \geq N$.

In this case we write

$$
\lim _{n \rightarrow \infty} s_{n}=-\infty \quad \text { or } \quad s_{n} \rightarrow-\infty
$$

Example 3.16. Consider the following sequences

- Sequence $\left\{s_{n}\right\}_{n=1}^{\infty}=\left\{10 n-n^{2}\right\}_{n=1}^{\infty}$ diverges to negative infinity.

Let $B<0$ be given. We want

$$
\begin{aligned}
10 n-n^{2} & <B \\
n(10-n) & <B \\
n(n-10) & >-B
\end{aligned}
$$

The inequality is true if $n>-B$ and $n \geq 11$. Choose $N \in \mathbb{N}$ so that $N>-B$ and $N \geq 11$ so if $n \geq N$ then

$$
n(n-10) \geq N(N-10) \geq N>-B
$$

Multiply the inequality by -1

$$
-n(n-10)=n(10-n)<-(-B)=B, \quad \forall n \geq N
$$

This shows that $10 n-n^{2} \rightarrow-\infty$.

- Sequence $\left\{s_{n}\right\}_{n=1}^{\infty}=\left\{(-1)^{n} n\right\}_{n=1}^{\infty}$.

The terms of sequence are

$$
-1,2,-3,4,-5,6,-7,8, \ldots
$$

If we consider some subsequences $\left\{s_{2 k-1}\right\}_{k=1}^{\infty}$ and $\left\{s_{2 k}\right\}_{k=1}^{\infty}$, we found that

$$
\begin{aligned}
& \text { terms of sequence }\left\{s_{2 k-1}\right\} \text { are } \quad-1,-3,-5,-7, \ldots \rightarrow-\infty \\
& \text { terms of sequence }\left\{s_{2 k}\right\} \text { are } \quad 2,4,6,8, \ldots \rightarrow \infty
\end{aligned}
$$

Subsequences $\left\{s_{2 k-1}\right\}$ and $\left\{s_{2 k}\right\}$ diverge to negative infinity and to positive infinity, respectively. However, $\left\{s_{n}\right\}_{n=1}^{\infty}$ does not diverge neither to negative infinity nor to positive infinity.

Theorem 3.34. $s_{n} \rightarrow-\infty$ if and only if $-s_{n} \rightarrow \infty$.

Proof. Exercise.

Theorem 3.35. If $s_{n} \rightarrow-\infty$ and $t_{n} \rightarrow-\infty$ then

1. $s_{n}+t_{n} \rightarrow-\infty$
2. $s_{n} \cdot t_{n} \rightarrow \infty$

Proof. Exercise.

Theorem 3.36. If $s_{n} \rightarrow-\infty$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ is bounded then $s_{n}+t_{n} \rightarrow-\infty$.

Proof. Exercise.

Corollary 3.37. If $s_{n} \rightarrow-\infty$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ is convergent then $s_{n}+t_{n} \rightarrow-\infty$.

Proof. Exercise.

Theorem 3.38. Suppose $s_{n} \rightarrow \infty$ and $t_{n} \rightarrow L$

1. If $L>0$, then $s_{n} t_{n} \rightarrow \infty$.
2. If $L<0$, then $s_{n} t_{n} \rightarrow-\infty$.
3. If $L=0$, then we cannot say anything about the convergence of $s_{n} t_{n}$.

Proof.

1. First, make sure that t_{n} is sufficiently different from zero. Choose $\varepsilon=\frac{L}{2}$. As $t_{n} \rightarrow L$, there exists $N_{1} \in \mathbb{N}$ so that

$$
\begin{array}{lll}
& \left|t_{n}-L\right| \quad<\frac{L}{2}, \quad \forall n \geq N_{1} \\
\text { i.e. } \quad-\frac{L}{2}<t_{n}-L & <\frac{L}{2} \\
& \frac{L}{2}<\quad t_{n} \quad<3 \frac{L}{2}
\end{array}
$$

This shows that $t_{n}>\frac{L}{2}$, for all $n \geq N$.
Next, claim $s_{n} t_{n} \rightarrow \infty$.
Let $B>0$ be given. As $s_{n} \rightarrow \infty, \exists N_{2} \in \mathbb{N}$ so that $s_{n}>2 \frac{B}{L}$ for all $n \geq N_{2}$. Set $N=\max \left\{N_{1}, N_{2}\right\}$, if $n \geq N$ then we get

$$
s_{n} \cdot t_{n}>2 \frac{B}{L} \cdot \frac{L}{2}=B
$$

As $B>0$ is arbitrary, this proves the claim that $s_{n} t_{n} \rightarrow \infty$.
2. Similarly.
3. Exercise.

Theorem 3.39. Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be a sequence with $s_{n} \neq 0$ for all n. Then $\left|s_{n}\right| \rightarrow \infty$ if and only if $\frac{1}{s_{n}} \rightarrow 0$.

Proof.

\Rightarrow Assume $\left|s_{n}\right| \rightarrow \infty$. Let $\varepsilon>0$ be given. As $\left|s_{n}\right| \rightarrow \infty$, there exists $N \in \mathbb{N}$ so that $\left|s_{n}\right|>\frac{1}{\varepsilon}$ for all $n \geq N$.

The reciprocals

$$
\frac{1}{\left|s_{n}\right|}<\varepsilon \Rightarrow\left|\frac{1}{s_{n}}\right|<\varepsilon, \quad \forall n \geq N .
$$

As $\varepsilon>0$ is arbitrary we see that $\frac{1}{s_{n}} \rightarrow 0$.
\Leftarrow Suppose $\frac{1}{s_{n}} \rightarrow 0$. Let $B>0$ be arbitrary. As $\frac{1}{s_{n}} \rightarrow 0$, there exists $N \in \mathbb{N}$ so that

$$
\left|\frac{1}{s_{n}}\right|<\frac{1}{B} \quad \Rightarrow \quad\left|s_{n}\right|>B, \forall n \geq N .
$$

As B is arbitrary, this shows that $\left|s_{n}\right| \rightarrow \infty$.

Theorem 3.40. Consider the geometric sequence $\left\{r^{n}\right\}_{n=1}^{\infty}$ where r is fixed.

1. If $|r|<1$, then $r^{n} \rightarrow 0$.
2. If $r=1$, then $r^{n} \rightarrow 1$.
3. If $r>1$, then $r^{n} \rightarrow \infty$.
4. If $r \leq-1$, then $\left\{r^{n}\right\}_{n=1}^{\infty}$ diverges.

Proof.

1. This is Theorem 3.12 (Page 75.).
2. Obvious.
3. Suppose $r>1$, then $0<\frac{1}{r}<1$. By part 1, $\left(\frac{1}{r}\right)^{n} \rightarrow 0$. By theorem 3.39 (page 96.) $\left|r^{n}\right|=|r|^{n}=r^{n} \rightarrow \infty$.
4. Suppose $r=-1$ then $r^{n}=(-1)^{n}$. Clearly $(-1)^{n}$ diverges. Suppose $r<$ -1 then $-r>1$. By part $3,\left|r^{n}\right|=|r|^{n} \rightarrow \infty$. Thus sequence $\left\{\left|r^{n}\right|\right\}$ is unbounded. It follows that $\left\{r^{n}\right\}$ is unbounded. So r^{n} must diverges. However, r^{n} has alternating signs so r^{n} does not diverge neither to ∞ nor to $-\infty$.

Theorem 3.41. Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be a sequence which diverges to ∞ (or $-\infty$). Then every subsequence $\left\{s_{n}\right\}_{n_{k}}$ diverges to ∞ (or $-\infty$) also.

Proof. Exercise.

Exercise

1. Prove theorem 3.31 .
2. Prove theorem 3.32 .
3. Prove corollary 3.33 .
4. Prove theorem 3.34
5. Prove theorem 3.35
6. Prove theorem 3.36
7. Prove corollary 3.37
8. Prove theorem 3.38 part 3 .
9. Prove theorem 3.41.

The following theorem is extremely important and follows directly from the completeness property of real numbers \mathbb{R}

Theorem 3.42.

1. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is increasing and bounded above, then it is convergent, and $\lim _{n \rightarrow \infty} s_{n}=\sup \left\{s_{n} \mid n \in \mathbb{N}\right\}$.
2. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is decreasing and bounded below, then it is convergent, and $\lim _{n \rightarrow \infty} s_{n}=\inf \left\{s_{n} \mid n \in \mathbb{N}\right\}$.
3. A bounded monotone sequence is convergent.

Proof.

1. Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be increasing and bounded above. Set $L=\sup \left\{s_{n} \mid n \in \mathbb{N}\right\}$.

Claim: $s_{n} \rightarrow L$.
Let $\varepsilon>0$ be given. By theorem 2.3 (page 38.) there exists an element $s_{N} \in\left\{s_{n} \mid n \in \mathbb{N}\right\}$ so that

$$
L-\varepsilon<s_{N} \leq L
$$

However $\left\{s_{n}\right\}$ is increasing

$$
\begin{aligned}
& L-\varepsilon<s_{N} \leq s_{N+1} \leq s_{N+2} \leq \ldots \leq \quad s_{n} \quad \leq \ldots \leq L, \quad \forall n \geq N \\
& L-\varepsilon<\quad s_{n} \quad \leq L<L+\varepsilon, \quad \forall n \geq N \\
&-\varepsilon<s_{n}-L<\varepsilon \\
&\left|s_{n}-L\right| \quad<\quad \varepsilon, \quad \forall n \geq N
\end{aligned}
$$

This shows that $s_{n} \rightarrow L$.
2. Similar.
3. Follows from part 1 and 2 .

Corollary 3.43. Sequence $\left\{s_{n}\right\}_{n=1}^{\infty}=\left\{\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty}$ is convergent.

Proof. Claim : The sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is increasing.
By the binomial theorem

$$
\begin{aligned}
s_{n}=\left(1+\frac{1}{n}\right)^{n} & =\sum_{i=0}^{n}\binom{n}{i} 1^{n-i}\left(\frac{1}{n}\right)^{i}=\sum_{i=0}^{n}\binom{n}{i} \frac{1}{n^{i}} \\
& =\sum_{i=0}^{n} \underbrace{\frac{n(n-1) \cdots(n-i+1)}{i!} \frac{1}{n^{i}}}_{i \text { terms }} \\
& =\sum_{i=0}^{n} \frac{1}{i!} \frac{n}{n} \frac{n-1}{n} \cdots \frac{n-i+1}{n} \\
& =\sum_{i=0}^{n} \frac{1}{i!} 1\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{i-1}{n}\right) \\
& =\sum_{i=0}^{n} \frac{1}{i!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{i-1}{n}\right) \\
\text { also } \quad s_{n+1} & =\sum_{i=0}^{n+1} \frac{1}{i!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right) \cdots\left(1-\frac{i-1}{n+1}\right)
\end{aligned}
$$

Consider $s_{n+1}-s_{n}$, which is

$$
\begin{align*}
& \sum_{i=0}^{n} \frac{1}{i!}[\underbrace{\left(1-\frac{1}{n+1}\right) \cdots\left(1-\frac{i-1}{n+1}\right)}_{(b)}-\underbrace{\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{i-1}{n}\right)}] \\
& +\frac{1}{(n+1)!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right) \cdots\left(1-\frac{n}{n+1}\right) \tag{3.7}
\end{align*}
$$

Since

$$
\begin{aligned}
& \frac{1}{n+1}<\frac{1}{n} \Rightarrow 1-\frac{1}{n+1}>1-\frac{1}{n} \\
& \frac{2}{n+1}<\frac{2}{n} \Rightarrow 1-\frac{2}{n+1}>1-\frac{2}{n} \\
& \vdots \\
& \frac{i}{n+1}<\frac{i}{n} \Rightarrow 1-\frac{i}{n+1}>1-\frac{i}{n} \\
& \Rightarrow(a)>(b) \Rightarrow(a)-(b)>0
\end{aligned}
$$

thus every term of summation 3.7 is positive. This implies that $s_{n+1}-s_{n}>0 \Rightarrow$ $\left\{s_{n}\right\}_{n=1}^{\infty}$ is increasing.

Claim : The sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is bounded above.
Since $0<\left(1-\frac{i}{n}\right)<1, i=1, \ldots, n-1$ then

$$
s_{n}=\sum_{i=0}^{n} \frac{1}{i!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{i-1}{n}\right)<\sum_{i=0}^{n} \frac{1}{i!}
$$

Consider

$$
\begin{aligned}
i! & =i(i-1)(i-2) \cdots 3 \cdot 2 \cdot 1 \\
& \geq 2 \cdot 2 \cdot 2 \cdots 2 \cdot 2 \cdot 1=2^{i-1} \\
\Rightarrow \quad \frac{1}{2^{i-1}} & \geq \frac{1}{i!} \\
\Rightarrow \quad s_{n} & \leq \sum_{i=0}^{n} \frac{1}{i!}=\frac{1}{0!}+\sum_{i=1}^{n} \frac{1}{i!} \\
& \leq 1+\sum_{i=1}^{n} \frac{1}{2^{i-1}}=1+\underbrace{\sum_{i=1}^{n}\left(\frac{1}{2}\right)^{i-1}}_{\text {geometry series }}<1+2=3
\end{aligned}
$$

So $s_{n} \leq 3 \Rightarrow\left\{s_{n}\right\}_{n=1}^{\infty}$ is bounded above.
As $\left\{s_{n}\right\}_{n=1}^{\infty}$ is increasing and bounded above then $\left\{s_{n}\right\}_{n=1}^{\infty}$ is convergent.
The limit of this sequence is called the number e.

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

where $e \approx 2.71829 \ldots$

Theorem 3.44.

1. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is increasing then $\left\{s_{n}\right\}_{n=1}^{\infty}$ either converges or diverges to ∞.
2. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is decreasing then $\left\{s_{n}\right\}_{n=1}^{\infty}$ either converges or diverges to $-\infty$.
3. A monotone sequence either converges or diverges to ∞ or $-\infty$.

Proof.

1. Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be increasing. If $\left\{s_{n}\right\}$ is bounded above then by theorem 3.42, $\left\{s_{n}\right\}$ converges. If $\left\{s_{n}\right\}$ is not bounded above, then for any given $B>0$ there exists a term s_{N} so that $s_{N}>B$. However the sequence is increasing, so $s_{N} \leq s_{N+1} \leq s_{N+2} \leq \ldots$. Thus

$$
s_{n}>B \quad \forall n \geq N
$$

As B is an arbitrary, this show that $s_{n} \rightarrow \infty$.
2. Similar.
3. Follows from part 1 and 2 .

Theorem 3.45. Let S be a non-empty set of real numbers which is bounded above. Let $L=\sup S$. Then there exists a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of elements of S such that $s_{n} \rightarrow L$.

Proof. By theorem 2.3 (page 38.), for any $\varepsilon>0$, there exists $s \in S$ so that $L-\varepsilon<s \leq L$. Thus for every $n \in \mathbb{N}$, there exists an element $s_{n} \in S$ so that $L-\frac{1}{n}<s_{n} \leq L$. Consider the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$. We know that $\lim _{n \rightarrow \infty}\left(L-\frac{1}{n}\right)=L$, by the squeeze theorem $\lim _{n \rightarrow \infty} s_{n}=L$ also.

By an idea of the above theorem combining with theorem 3.42, "if $\left\{s_{n}\right\}_{n=1}^{\infty}$ is increasing and bounded above, then it is convergent", it gives us the following theorem.

Theorem 3.46. Let S be a non-empty set of real numbers which is bounded above. Suppose $L=\sup S$ which is $L \notin S$. Then there exists a strictly increasing sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of elements of S such that $s_{n} \rightarrow L$.

Proof. Pick s_{n} as follows :

1. Choose s_{1} to be any element in S so that $L-1<s_{1}<L$.
2. Suppose $s_{1}, s_{2}, \ldots, s_{n}$ have already been chosen so that

$$
s_{1}<s_{2}<s_{3}<\ldots<s_{n} \quad \text { and } \quad L-\frac{1}{k}<s_{k}<L, \text { for } k=1,2, \ldots, n \text {. }
$$

To choose s_{n+1}, by theorem 2.3 (page 38.), there exists $\dot{s} \in S$ so that

$$
L-\frac{1}{n+1}<\dot{s}<L
$$

Because $s_{n}<L$,also by the same theorem, there exists $\ddot{s} \in S$ so that

$$
s_{n}<\ddot{s}<L
$$

Choose $s_{n+1}=\max (\dot{s}, \ddot{s})$ then $s_{n}<s_{n+1}$ which is

$$
L-\frac{1}{n+1}<s_{n+1}<L
$$

By mathematical induction, for every $n \in \mathbb{N}$, we can choose $s_{n} \in S$ so that

1. $\left\{s_{n}\right\}_{n=1}^{\infty}$ is increasing.
2. $L-\frac{1}{n}<s_{n}<L$

By 2 and squeeze theorem, $\lim _{n \rightarrow \infty} s_{n}=L$.

Exercise

1. Show that $\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{n}=e^{2}$.
2. Show that $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=\frac{1}{e}$.
3. Show that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{n}=\sqrt{e}$.
4. Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be defined recursively by
(a) $s_{1}=1$
(b) $s_{n+1}=\sqrt{1+s_{n}}, \forall n \in \mathbb{N}$.

Show that $\left\{s_{n}\right\}_{n=1}^{\infty}$ is convergent and find $\lim _{n \rightarrow \infty} s_{n}$.

3.6.3 The Bolzano-Weierstrass Theorem

Lemma 3.47. Every sequence of real numbers $\left\{s_{n}\right\}_{n=1}^{\infty}$ has a monotone subsequence.

Proof. We can list the elements of the sequence by

$$
s: s_{1}, s_{2}, s_{3}, \ldots
$$

Consider the tails of the sequence by write down subsequences obtained by cutting the first, the second, the third element, and so on :

$$
\begin{aligned}
& s^{(1)}: \\
& s_{1}, s_{2}, s_{3}, \ldots \\
& s^{(2)}: \\
& s_{2}, s_{3}, s_{4}, \ldots \\
&: \\
& s_{3}, s_{4}, s_{5}, \ldots \\
& s^{(n)}: \\
& s_{n}, s_{n+1}, s_{n+2}, \ldots
\end{aligned}
$$

We distinguish two cases : Either Case I. every tail $s^{(n)}$ has a largest element, or Case II. at least one of these tails has no largest element.

- Case I. Every tail $s^{(n)}$ has a largest element.

In this case, $\max \left(s^{(k)}=\max \left\{s_{n}\right\}_{n=k}^{\infty}\right.$ exists for all k. Construct a subsequence $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$ as follows :

1. Let n_{1} be the smallest index so that $s_{n_{1}}=\max \left\{s_{n}\right\}_{n=1}^{\infty}$. (There may exist many values of \bar{n} so that $s_{\bar{n}}=\max \left\{s_{n}\right\}_{n=1}^{\infty}$, we let n_{1} be the smallest of such \bar{n}.)
2. To find $s_{n_{2}}$, we look at the tail after the element n_{1}, i.e. $s^{n_{1}+1}$ Let n_{2} be the smallest index so that $s_{n_{2}}=\max \left\{s_{n}\right\}_{n=n_{1}+1}^{\infty}$. Then we have $n_{1}<n_{2}$ and $s_{n_{1}} \geq s_{n_{2}}$.
3. Next let n_{3} be the smallest index so that $s_{n_{3}}=\max \left\{s_{n}\right\}_{n=n_{2}+1}^{\infty}$.
4. In general, suppose we have picked indices

$$
n_{1}<n_{2}<n_{3}<\cdots<n_{k}
$$

with corresponding terms

$$
s_{n_{1}} \geq s_{n_{2}} \geq s_{n_{3}} \geq \cdots \geq s_{n_{k}}
$$

Let n_{k+1} be the smallest index so that $n_{k+1} \geq n_{k}+1\left(\Rightarrow n_{k+1}>n_{k}\right)$ and $s_{n_{k+1}}=\max \left\{s_{n}\right\}_{n=n_{k}+1}^{\infty}$. We get that $s_{n_{k+1}} \geq s_{n_{k}}$. So $n_{1}<n_{2}<$ $n_{3}<\cdots<n_{k}<n_{k+1}$ with $s_{n_{1}} \geq s_{n_{2}} \geq s_{n_{3}} \geq \cdots \geq s_{n_{k}} \geq s_{n_{k+1}}$.

By mathematical induction, we can choose an element $s_{n_{k}}$ for every $k \in \mathbb{N}$, so that the subsequence $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$ is monotone decreasing.

- Case II. At least one of these tails has no largest element, say

$$
s^{(N)}=s_{N}, s_{N+1}, s_{N+2}, s_{N+3}, \ldots
$$

Claim : If s_{n} is any element of this subsequence, then there exists $\bar{n}>n$ so that $s_{\bar{n}}>s_{n}$.

Suppose to the contrary that $s_{\bar{n}} \leq s_{n}, \forall \bar{n}>n$. Let $s=\max \left\{s_{N}, s_{N+1}, s_{N+2}, \ldots, s_{n}\right\}$. As $s \geq s_{n} \geq s_{\bar{n}}, \forall \bar{n}>n$. We see that $s=\max \left\{s^{(N)}\right\}$. It contradicts to the assumption that $s^{(N)}: s_{N}, s_{N+1}, s_{N+2}, s_{N+3}, \ldots$ has no maximum. This proves the claim.

Now, construct an increasing subsequence :

1. Let $n_{1}=N$, so $s_{n_{1}}=s_{N}$
2. By the claim, there exists such index n_{2} so that $n_{1}<n_{2}$ and $s_{n_{1}}<s_{n_{2}}$.
3. In general, suppose we have chosen $n_{1}<n_{2}<\cdots<n_{k}$ with $s_{n_{1}}<s_{n_{2}}<$ $\cdots<s_{n_{k}}$, we are able to find n_{k+1} so that $n_{k}<n_{k+1}$ and $s_{n_{k}}<s_{n_{k+1}}$.

So continuing this process, we obtain a strictly increasing subsequence $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$.

Both two cases show us that we always find a monotone subsequence of any sequence.

Theorem 3.48 (Bolzano-Weierstrass theorem for sequences). Every bounded sequence of real numbers has a convergent subsequence.

Proof. Let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence. By lemma 3.47 (page 103.), there exists a monotone subsequence $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$. Since $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$ is bounded, this subsequence $\left\{s_{n_{k}}\right\}_{k=1}^{\infty}$ is also bounded. By theorem 3.42 (page 98.), this monotone bounded subsequence converges.

Corollary 3.49. Every bounded sequence of real numbers has a Cauchy subsequence.

Proof. It is a consequence from theorem 3.26 (page 88.).
The completeness property (or completeness axiom or the least-upperbound property), an ordered field F has the the completeness property if every nonempty subset S of F which is bounded above has a least upper bound, which has discussed in definition 2.2 (page 42 .), is an essential ingredient of the proof of Bolzano-Weierstrass theorem for sequences. Bolzano-Weierstrass theorem is also an important part of the proof of theorem 3.26, A sequence of real
numbers converges if and only if it is Cauchy. Indeed, one can prove that the completeness property 2.2 and theorem 3.26 are equivalent. In the general idea for considering the completeness of some abstract set, we sometimes consider its Cauchy sequences to figure out the completeness property.

Exercise

Prove or disprove the following statements.

1. Every sequence has an increasing subsequence.
2. Every sequence has a bounded subsequence.
3. Every unbounded sequence has a subsequence that diverges to ∞ or $-\infty$.
4. If a sequence has a greatest term, then every subsequence of the sequence has a greatest term.
5. Every unbounded sequence has no convergent subsequence.

Chapter 4

Limit and Continuity

4.1 Cluster Points and Isolated Points

Definition 4.1 (neighborhood and deleted neighborhood). If $a \in \mathbb{R}$, then ε neighborhood of a is the set

$$
\begin{aligned}
N_{\varepsilon}(a) & =\{x \in \mathbb{R}:|x-a|<\varepsilon\} \\
& =(x-\varepsilon, x+\varepsilon)
\end{aligned}
$$

A deleted ε-neighborhood of a is the set

$$
N_{\varepsilon}^{*}(a)=\{x \in \mathbb{R}: 0<|x-a|<\varepsilon\},
$$

i.e. cut the center a of $N_{\varepsilon}(a)$.

Figure 4.1: Deleted ε-Neighborhood $N_{\varepsilon}^{*}(a)$ is contained in S.

Definition 4.2 (cluster point). Let $S \subseteq \mathbb{R}$. A point $a \in \mathbb{R}$ is called a cluster point or accumulation point or limit point of S provided that every deleted neighborhood $N_{\varepsilon}^{*}(a)$ contains at least one element of S.

Example 4.1. These are examples of cluster points and not cluster point of S.

1. By figure 4.1, all $x \in N_{\varepsilon}^{*}(a)$ is also in S. Then a is a cluster point of set S.
2. All points in $(0,1)$ are cluster points of $(0,1)$.
3. The points 0 and 1 are both cluster points of $(0,1)$
4. All points in (a, b) and a and b are cluster points of (a, b).
5. All points in $[a, b]$ and are cluster points of $[a, b]$.
6. If x is not in $[a, b]$ then x is not a cluster point of $[a, b]$.
7. Let $S=(0,1) \cup\{2\}$. Then 2 is not a cluster point of S.
8. Let $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} . a=0$ is an only one cluster point of S.

These examples show "a cluster point a of set S may be an element of S or may be not an element of S."

Definition 4.3. Let $S \in \mathbb{R}$. The set S^{\prime} consisting the cluster points of S is called the derived set of S.

Example 4.2. These are examples of derived sets of set S.

1. $S=(0,1) \Rightarrow S^{\prime}=[0,1]$
2. $S=(0,1) \cup\{2\} \Rightarrow S^{\prime}=[0,1]$
3. $S=(a, b] \Rightarrow S^{\prime}=[a, b], a<b$
4. Let $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \Rightarrow S^{\prime}=\{0\}$.
5. We cannot find a cluster point of a set of integer \mathbb{Z}, then its derive set is empty set.

The next theorem makes it easy to find cluster points of set S.

Theorem 4.1. Let $S \subseteq \mathbb{R}$ and $a \in \mathbb{R}$. Then the following are equivalent.

1. a is a cluster point of S.
2. For every $\delta>0$, there exists $x \in S$ with $0<|x-a|<\delta$.
3. There exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in $S \backslash\{a\}$ such that $x_{n} \rightarrow a$. (i.e. there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in S with $x_{n} \neq a, \forall n$ so that $\left.x_{n} \rightarrow a\right)$.
4. There exists a sequence $\left\{y_{k}\right\}_{k=1}^{\infty}$ with distinct terms of S (i.e. if $y_{k}=y_{l} \Rightarrow$ $k=l)$ such that $y_{k} \rightarrow a$.
5. Every neighborhood (nbhd) of a contains infinitely elements of S.

Proof. We proof 1. $\rightarrow 2 . \rightarrow 3 . \rightarrow 4 . \rightarrow 5 . \rightarrow 1$.)
(I. \rightarrow [7.) Let a be cluster point of S. Then for every $\delta>0$, by the definition, there exists at least one element of S in the deleted nbhd of $N_{\varepsilon}^{*}(a)$. Hence this x must satisfy $0<|x-a|<\delta$.
(27. \rightarrow 3].) Construct the sequence $\left\{x_{n}\right\}$ as follows. For each $n \in \mathbb{N}$, set $\delta_{n}=\frac{1}{n}$. By 3. , there exists an element x_{n} of S s.t. $0<\left|x_{n}-a\right|<\delta_{n}$, i.e.

$$
a-\frac{1}{n}<x_{n}<a+\frac{1}{n}, \quad x_{n} \neq a .
$$

Let $n \rightarrow \infty$, by the squeeze theorem $x_{n} \rightarrow a$.
（3］．\rightarrow（7．）Suppose $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence in S with $x_{n} \neq a$ and $x_{n} \rightarrow a$ ．Construct a sequence $\left\{y_{k}\right\}_{k=1}^{\infty}$ as follows．Set $n_{1}=1$ and $y_{1}=x_{n_{1}}=x_{1}$ ．Set $\varepsilon=\left|x_{1}-a\right|$ as $x_{n} \rightarrow a$ there exists $n_{2} \in \mathbb{N}$ so that $\left|x_{n_{2}}-a\right|<\frac{\varepsilon}{2}=\frac{\left|x_{1}-a\right|}{2}$ ．This makes sure that $x_{2} \neq x_{1}$ and $x_{2} \neq a$ ．Set $y_{2}=x_{n_{2}}$ ．

Suppose we have chosen $y_{1}, y_{2}, \ldots, y_{k}$ ．So

$$
\left|y_{k}-a\right|<\frac{1}{2}\left|y_{k-1}-a\right|<\frac{1}{2^{2}}\left|y_{k-2}-a\right|<\cdots<\frac{1}{2^{k-1}}\left|y_{1}-a\right|=\frac{\varepsilon}{2^{k-1}} .
$$

As $x_{n} \rightarrow a$ ，there exists $n_{k+1} \in \mathbb{N}$ so that $\left|x_{n_{k+1}}-a\right|<\frac{1}{2}\left|y_{k}-a\right|$ ．Set $y_{k+1}=$ $x_{n_{k+1}}$ ．Then $\left|y_{k+1}-a\right|<\frac{1}{2}\left|y_{k}-a\right|<\frac{1}{2}\left(\frac{\varepsilon}{2^{k-1}}\right)=\frac{\varepsilon}{2^{k}}$ Continuing this way， we obtain element $y_{1}, y_{2}, y_{3}, \ldots$ of S so that

$$
\begin{equation*}
0<\left|y_{k}-a\right|<\frac{\varepsilon}{2^{k-1}} \tag{4.1}
\end{equation*}
$$

and $\left|y_{k}-a\right| \neq\left|y_{l}-a\right|$ if $k \neq l$ ．
Now by equation（4．1），and the squeeze theorem $\left|y_{k}-a\right| \rightarrow 0$ as $k \rightarrow \infty$ ． Then $y_{k}-a \rightarrow 0 \Rightarrow y_{k} \rightarrow a$ ．
（四．\rightarrow 國）Let $N_{\varepsilon}(a)$ be a nbhd of a ．By 4．，there exists a sequence $\left\{y_{k}\right\}_{k=1}^{\infty}$ of distinct elements of S such that $y_{k} \rightarrow a$ ．By the alternative definition of a limit， $N_{\varepsilon}(a)$ contain infinitely many terms of y_{k} since all these y_{k} are distinct．This shows that $N_{\varepsilon}(a)$ contains infinitely many（distinct）elements of S ．
（5．\rightarrow 田）Let $N_{\varepsilon}(a)$ be any nbhd of a ．
By 5．$N_{\varepsilon}(a)$ contains infinitely points of S ．One of these elements may equal to a ，but the infinitely remaining ones are different from A ．So the deleted neighborhood $N_{\varepsilon}^{*}(a)$ contains even infinitely many elements of S ．By the definition a must be a cluster point of S ．

Theorem 4．2．A finite set has no cluster points．

Proof. Follows from property 4. of theorem 4.1, i.e. we cannot find $y_{n} \rightarrow a$ with y_{k} is different.

Definition 4.4 (isolated point). Let $S \subseteq \mathbb{R}$. A point $a \in S$ which is not a cluster point of S is called an isolated point of S.

Remark. We may consider definition 4.4 of an isolated point a of S as

1. $a \in S$.
2. There exists a deleted nbhd $N_{\varepsilon}^{*}(a)$ which contains no element of S.

Example 4.3.

- Let $S=(0,1) \cup\{2\}$. We can see that 2 is an isolated point of S.
- Let $S=\left\{\frac{1}{n}, n \in \mathbb{N}\right\}$. Since $\frac{1}{n}$ is not a cluster point of $S \Rightarrow$ every element of S is an isolated point.
- Open and close intervals (a, b) and $[a, b]$ where $a<b$ have no isolated point.
- Let S be any nonempty finite set. By theorem 4.2, all elements in S are isolated points of S.
- A set of real numbers \mathbb{R} has no isolated point.
- A set of rational numbers \mathbb{Q} has no isolated point.
- A set of irrational numbers $\mathbb{R} \backslash \mathbb{Q}$ has no isolated point.
- A set of integers \mathbb{Z} contains all isolated points of itself.

Definition 4.5 (closure). Let $S \subseteq \mathbb{R}$ and S^{\prime} is derived set of set S. The closure of S is the set

$$
\bar{S}=S \cup S^{\prime}
$$

i.e. the closure \bar{S} of S contains elements of S and its cluster points.

Example 4.4.

- For $S=(0,1)$, its closure is $\bar{S}=[0,1]$
- For $S=(0,1) \cup\{2\} \Rightarrow \bar{S}=[0,1] \cup 2$. .
- $S=\left\{\frac{1}{n}, n \in \mathbb{N}\right\} \Rightarrow \bar{S}=\left\{\frac{1}{n}, n \in \mathbb{N}\right\} \cup\{0\}$.
- The closure of a rational number set \mathbb{Q} is a set of real numbers \mathbb{R}.
- Also an irrational number set $\mathbb{R} \backslash \mathbb{Q}$ has the same closure, a set of real numbers \mathbb{R}.
- The closure of an integer set \mathbb{Z} is itself.

Theorem 4.3. Let $S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$. Then $x \in \bar{S}$ if and only if there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in S such that $x_{n} \rightarrow x$.

Proof. Exercise.

Theorem 4.4 (Blozano-Weierstrass theorem for set). Every bounded, infinite subset S of \mathbb{R} has cluster point.

Proof. Since S is infinite, there exists a countable subset $X \subseteq S$ whose elements we can list

$$
X=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}
$$

So $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence of distinct point of S because S is bounded, the subset $X=\left\{x_{n}\right\}_{n=1}^{\infty}$ of S is also bounded. By the Bolzano-Weierstrass theorem for sequence 3.48 (page 105), there exists a convergent subsequence $\left\{y_{k}\right\}_{k=1}^{\infty}=\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$.

Let $a=\lim _{n \rightarrow \infty} y_{k}$. Note that by theorem 4.1 property ?? (page ??.), a is a cluster point of S.

Remark. We cannot omit the assumption that S must be bounded. By an example 4.2 part 5 (page $\mathbb{T M}$), an integer set \mathbb{Z} is infinite but it is unbounded, \mathbb{Z} has no cluster point.

Exercise

1. Prove theorem 4.3 (page 112.).
2. Prove or disprove the following statements about sets of real numbers.
(a) If $A \subseteq B$, then $A^{\prime} \subseteq B^{\prime}$
(b) If $A^{\prime}=B^{\prime}$, then $A=B$
(c) $A^{\prime} \cup B^{\prime} \subseteq(A \cup B)^{\prime}$
(d) $A^{\prime} \cup B^{\prime} \supseteq(A \cup B)^{\prime}$
(e) $A^{\prime} \cap B^{\prime} \subseteq(A \cap B)^{\prime}$
(f) $A^{\prime} \cap B^{\prime} \supseteq(A \cap B)^{\prime}$

4.2 Some Topological Concepts

The topological concepts of open and closed, as applied to intervals, can be extended quite generally to sets. The concepts and definitions are based on neighborhood and cluster point.

A set whose elements are sets is often referred to as a collection of sets.

Definition 4.6 (union). If \mathcal{C} is a collection of sets, then the union of \mathcal{C} is a set consisting of all elements that belong to at least one of the members of \mathcal{C} :

$$
\begin{aligned}
\cup \mathcal{C} & =\cup\{S: S \in \mathcal{C}\} \\
& =\{x: x \in S \text { for some } S \in \mathcal{C}\}
\end{aligned}
$$

Definition 4.7 (intersection). The intersection of collection \mathcal{C} is a set consisting of those elements belonging to every member of \mathcal{C} :

$$
\begin{aligned}
\cap \mathcal{C} & =\cap\{S: S \in \mathcal{C}\} \\
& =\{x: x \in S \text { for all } S \in \mathcal{C}\}
\end{aligned}
$$

Example 4.5.

- $\cup\left\{N_{\delta}(a): \delta>0\right\}=\mathbb{R}$
- $\cap\left\{N_{\delta}(a): \delta>0\right\}=\{a\}$
- $\cup\{[n-1, n]: n \in \mathbb{Z}\}=[0, \infty)$
- $\cap\left\{\left[0, \frac{1}{n}\right]: n \in \mathbb{Z}\right\}=\{0\}$
- $\cup\left\{\left(0, \frac{1}{n}\right): n \in \mathbb{Z}\right\}=(0,1)$
- $\cap\left\{\left(0, \frac{1}{n}\right): n \in \mathbb{Z}\right\}=\phi$
- $\cap\left\{\left(-\frac{1}{n}, \frac{1}{n}\right): n \in \mathbb{Z}\right\}=\{0\}$

Definition 4.8 (open set). A set S of real numbers is open in \mathbb{R} (briefly, open) if, for every $x \in S$, there exists a positive real number $\delta>0$ such that δ-neighborhood $N_{\delta}(x)$ is contained in S, i.e. $N_{\delta}(x) \subseteq S$.

The real number δ depends on the point x, so different values of δ might be chosen for different point x of S.

Example 4.6.

- Claim : An open interval $(a, b), a<b$ is open in \mathbb{R}.

Consider for any $x \in(a, b)$. Let $\delta=\min (x-a, b-x)$ thus $N_{\delta}(x) \subseteq(a, b)$.

- Claim : An half open interval $(a, b], a<b$ is not open in \mathbb{R}.

Since $b \in(a, b]$ but $N_{\delta}(b)$ are not subsets of $(a, b]$ for all $\delta>0$.

- Any close interval $[a, b], a<b$ is not open.
- A set of real numbers \mathbb{R} or $(-\infty, \infty)$ is open.
- The empty set ϕ is open. Since ϕ has no elements whatever, there are no elements of ϕ that fail to have a neighborhood contained in ϕ.
- A singleton (a set which has only one element) is not open.
- A set of integers \mathbb{Z} is not open. (Exercise)
- A nonempty finite set is not open. (Exercise)

Theorem 4.5. The union of any collection of open sets is open.

Proof. Let \mathcal{C} be any collection of open sets. Let $\mathcal{C}=\cup \mathcal{C}$ and $x \in \mathcal{C}$ is arbitrary. Since $x \in \mathrm{C}$ then x must belong to at least one element of \mathcal{C}, says G. If $G \in \mathcal{C} \Rightarrow$ $G \subseteq \cup \mathcal{C}=\mathrm{C}$. Since G is open then there exists $\delta>0$ so that $N_{\delta}(x) \subseteq G \subseteq \mathrm{C}$. By the arbitrariness of x, we can conclude that C or the union of open sets is also open.

Example 4.7. Consider the collection $\mathcal{C}=\{(i, i+1): i \in \mathbb{Z}\}$. By theorem 4.5, $\cup \mathcal{C}$ or $\mathbb{R} \backslash \mathbb{Z}$ is open.

Theorem 4.6. The intersection of a finite collection of open sets is open.

Proof. Let \mathcal{C} be a finite collection of open sets, say $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$. To say that x belongs to the intersection means that x belongs to each $C_{i}, i=1,2, \ldots, n$. Since all of the sets C_{i} are open, there exist positive real numbers $\delta_{i}>0$ corresponding to set C_{i} such that $N_{\delta_{i}}(x) \subseteq C_{i}$. Let $\delta=\min \left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$. So N_{δ} is contained in every $C_{i} \Rightarrow N_{\delta} \subseteq C_{1} \cap C_{2} \cap \cdots \cap C_{n}$.

Remark. The intersection of an infinite collection of open sets is not necessary to be open. We can see from an example

$$
\bigcap\left\{\left(-\frac{1}{n}, \frac{1}{n}\right): n \in \mathbb{Z}\right\}=\{0\}
$$

where $\{0\}$ is a singleton which is not open.

Theorem 4.7. A set of real numbers is open in \mathbb{R} if and only if it is the union of a collection of open intervals.

Proof. (\Rightarrow) Let G be open. Then for each $x \in G$, there is $\delta_{x}>0$ such that $N_{\delta_{x}}(x) \subseteq G$. It follows that G is the union f all these open interval $N_{\delta_{x}}(x)$. (\Leftarrow) It follows immediately from theorem 4.5 (page 115.).

Definition 4.9 (closed set). A set S of real numbers is closed in \mathbb{R} (briefly, closed) if every cluster point belongs to S.

Example 4.8.

- A closed interval $[a, b], a<b$ is closed in \mathbb{R}.
- An open interval $(a, b), a<b$ is not closed in \mathbb{R} since a and b are cluster points of (a, b) but there are not contained in (a, b)
- A set of real numbers \mathbb{R} or $(-\infty, \infty)$ is closed.
- The empty set ϕ is closed. Since ϕ has no elements whatever, there are no elements of ϕ that fail to have a cluster point contained in ϕ.
- A singleton and the set of integer sets \mathbb{Z} are closed since they have no cluster point.
- A nonempty finite set is closed.

[^4]- The set of rational numbers \mathbb{Q} is not closed since irrational numbers are its cluster points but they are not contained in \mathbb{Q}.

Remark. Set of real numbers \mathbb{R} and empty set ϕ are both open and closed subset of \mathbb{R}. (Why?)

Theorem 4.8. Any subset of real numbers is closed if and only if its complement is open.

Proof. (\Rightarrow) Suppose $S \subseteq \mathbb{R}$ is closed and consider its complement $S^{c}=\mathbb{R} \backslash S$. For any $x \in S^{c}, x \notin S$ thus x is not a cluster point of $S \Rightarrow$ for $\delta>0, N_{\delta}(x) \cap S=\phi$. This shows that $N_{\delta}(x) \nsubseteq S \Rightarrow N_{\delta}(x) \subseteq S^{c}$. By an arbitrariness of $x \in S^{c}, S^{c}$ contains a neighborhood of x shows S^{c} is open.
(\Leftarrow) Conversely, suppose S^{c} is open. As S^{c} is open, for any $x \in S^{c}$ there exists $\delta>0$ so that $N_{\delta}(x) \subseteq S^{c}$. If is impossible to have $N_{\delta}(x) \cap S \neq \phi$ for all $\delta>0$. Hence, for $x \in S^{c}, x$ cannot be a cluster point of S. It follows that if there exists a cluster point of S, all cluster points must belong to S. Set S is therefore closed.

Corollary 4.9. Any subset of real numbers is open if and only if its complement is closed.

Proof. Exercise.
Theorem 4.10. The intersection of any collection of closed set is closed.
Proof. We use that fact that the complement of a union is the intersection of the complements. Suppose \mathcal{C} is a collection of a number of closed set. Consider the complement of the intersection of collection $\mathcal{C},(\cap \mathcal{C})^{c}$. By De Morgan's Law,

$$
(\cap \mathcal{C})^{c}=\cup \mathcal{G}
$$

where \mathcal{G} is a collection of all complements of the sets in \mathcal{C}. By theorem 4.8, the elements of \mathcal{G} are open. So $\cup \mathcal{G}$ is open (theorem 4.5). By theorem 4.8 again, the complement of $\cap \mathcal{C}$ is open then $\cap \mathcal{C}$ is closed.

Theorem 4.11. The union of a finite collection of closed sets is closed.

Proof. Exercise.

Theorem 4.12. A subset S of \mathbb{R} is closed if and only if every convergent sequence of points in S converges to a point in S.

Proof. (\Rightarrow) Let S be closed in \mathbb{R} and let $\left\{x_{n}\right\}$ be a convergent sequence which $x_{n} \in S, \forall n$ and $x_{n} \rightarrow x$. Suppose to the contrary that $x \notin S \Rightarrow x \in S^{c}$. By theorem 4.8, S^{c} is open and there exists $\delta>0, N_{\delta}(x) \subseteq S^{c}$. However $x_{n} \in S, \forall n$ then $x_{n} \notin N_{\delta}(x)$. It contradicts to $x_{n} \rightarrow x$. This shows that every convergent sequence of elements in S converges to the element in the same set.
(\Leftarrow) Let S be a subset of \mathbb{R}. Suppose x is a cluster point of S. By theorem 4.1 part 3, there exists a convergent sequence $\left\{x_{n}\right\}, x_{n} \in S, x_{n} \neq x$ and $x_{n} \rightarrow x$. By the assumption that every convergent sequence of points in S converges to a point in S then x must be in S. Since S contains its all cluster points then S is closed.

Exercise

1. Show that set of real numbers \mathbb{R} and empty set ϕ are both open and closed subset of \mathbb{R}.
2. Let S be a subset of \mathbb{R}, if S is both open and closed, determine what the set S is. Give the reason.
3. Prove corollary 4.9.
4. Prove theorem 4.11 .
5. Determine whether the following sets are open, closed, or neither.
(a) $\bigcap_{n=1}^{\infty}\left(0, \frac{1}{n}\right)$
(e) $\bigcap_{n=1}^{\infty}\left(1-\frac{1}{n}, 3+\frac{1}{n}\right)$
(b) $\bigcap_{n=1}^{\infty}\left[0, \frac{1}{n}\right]$
(f) $\bigcup_{n=1}^{\infty}\left[\frac{1}{n}, 1-\frac{1}{n}\right]$
(c) $\bigcup_{n=1}^{\infty}\left[0, \frac{1}{n}\right]$
(g) $\bigcup_{n=1}^{\infty}[n, n+1)$
(d) $\bigcup_{n=1}^{\infty}(n, n+1)$
(h) $\bigcap_{n=1}^{\infty}[n, \infty)$

Bibliography

[1] Nilrat, C. (2533). Abstract Algebra. Division of Mathematics, Faculty of Science, Prince of Songkla University, Thailand.
[2] Apostol, T. M. (1997). Linear algebra : a first course, with applications to differential equations. USA: John Wiley \& Sons, Inc.
[3] Pownall, M. W. (1994). REAL ANALYSIS, A first course with foundations. Dubuque: Wm. C. Brown Communications, Inc.

Index

abelean group, 8
accumulation point, 108
Archimedian law, 44
Archimedian property, 44
associative, 2

Bernoulli's inequality, 75
binary operation, 1
bound

$$
\text { bounded, } 35,64
$$

bounded above, 35, 64
bounded below, 35, 64
greatest lower bound, 37
least upper bound, 37
lower bound, 35
unbounded, 35, 64
upper bound, 35
cardinally equivalent, 47
Cartesian product, 50
Cauchy sequence, 86
ceil function, 45
closed set, 116
closure, 111
cluster point, 108
commutative, 2
commutative group, 8
completeness
completeness axiom, 42, 105
completeness property, 42, 105
convergent, 77
convergent sequence, 76
coset, 20
left coset, 21
right coset, 21
countable, 50
cycle notation, 10
cyclic, 18
decreasing, 62
strictly decreasing, 62
denumerable, 50
derived set, 108
divergent, 87
equinumerous, 47
equivalent transformation, 48
factor group, 23
field, 29
ordered field, 29
finite, 48
finite group, 9
floor function, 45
generator, 18
geometric sequence, 75, 96
group, 5
abelean group, 8
commutative group, 8
permutations group, 10
groupoid, 6
identity, 5
increasing, 62
strictly increasing, 62
index, 61
infimum, 37
infinite, 48
intersection, 114
inverse, 5
irrational, 42
isolated point, 111
isomorphism, 25
kernel, 25
least-upper-bound property, 42, 105
limit, 77
limit point, 108
maximum, 37
minimum, 37
monoid, 6
monotone, 63
negative, 30
neighborhood, 107
deleted neighborhood, 107
null, 70, 77
null sequence, 70,77
open set, 114
open unit interval, 54
operation
binary operation, 1
order, 9
finite order, 19
infinite order, 19
positive, 30
quotient group, 23
real number, 42
reciprocal, 28
ring
unity, 27
commutative ring, 28
noncommutative ring, 28
ring with unity, 27
rule of cancellation, 8
semigroup, 6
sequence, 61
singleton, 115
squeeze theorem, 74, 85
subgroup, 12
cyclic subgroup, 18
improper subgroup, 13
nontrivial subgroup, 13
normal subgroup, 22
proper subgroup, 13
trivial subgroup, 13
subsequence, 67
supremum, 37
tail, 67
triangle inequality
second triangle inequality, 60
triangle inequality, 60
uncountable, 50
union, 113
unit, 28

[^0]: ${ }^{1}$ Note that a set of rational numbers \mathbb{Q} is not bounded above, i.e. we cannot find an element $x \in \mathbb{Q}$ such that $a \leq x$ for all $a \in \mathbb{Q}$.

[^1]: ${ }^{2} n!=n \cdot(n-1) \cdot(n-2) \cdots 2 \cdot 1$, for $n=1,2,3, \ldots$ and $0!=1$

[^2]: ${ }^{3}[0,1]$ is a set of real numbers x such that $0 \leq x \leq 1$.
 ${ }^{4}$ Both definitions and concepts of closed interval $[0,1]$ and "continuous" will be considered precisely in the latter context.

[^3]: ${ }^{1}$ Bolzano-Weierstrass theorem. Every bounded sequence of real numbers has a convergent subsequence.

[^4]: ${ }^{1}$ See the definition of a cluster point in definition 4.2 (page 108.)

