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Preface i

Preface

This year marks the 100th birthday of the well-known Russian mathematician, Academician
Nikolai Nikolaevich Yanenko (1921-1984), who made great contributions to the development of
both, analytical and numerical methods for solving differential equations, to computational math-
ematics, and to fluid mechanics. Born in Siberia, Academician Yanenko spent most of his profes-
sional life in Siberia, eight years of which as Director of the Institute of Theoretical and Applied
Mechanics in Novosibirsk in the then Soviet Union. While he thus is best known in the countries
of the former Soviet Union, his work has deeply influenced leading researchers all over the world.

Here at Suranaree University, we are lucky to have with us colleagues and have received nu-
merous visitors who either were Yanenko’s students or had the opportunity to learn from him. We
are therefore very pleased to host the virtual conference ”Analytical and Numerical Methods in
Differential Equations”, organized jointly with Durban University of Technology in South Africa
and the Khristianovich Institute of Theoretical and Applied Mechanics of the Russian Academy of
Sciences at Novosibirsk. Due to the current Covid situation, this conference had to take the form
of a virtual conference, but we hope to have the opportunity of meeting many of you in person
here in Thailand some time in the future.

We are particularly delighted to welcome over 120 researchers from all of the inhabited con-
tinents of the world, delivering a total of 80 presentations. Because of this unexpectedly large
number of speakers, we have extended the conference by an extra day. We hope that you find this
meeting inspiring and can avail of the opportunity to engage in interesting and fruitful discussions
with your colleagues and friends.

Our sincere gratitude goes to Suranaree University of Technology and Durban University of
Technology for providing financial support. We also wish to thank the latter and the Khristianovich
Institute of Theoretical and Applied Mechanics for helping coorganize this conference. This meeting
would not have been possible without the scientific contributions of all speakers and the hard work
of the members of the School of Mathematics including its students, to whom we extend our
deepest gratitude.

Above all, we wish that you enjoy the conference, and extend our warmest greetings to all of
you.

The Local Organizing Committee
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Day 1 : Monday, 23 August 2021

Chair: Chaiyasena A. P.

13.00 – 13.05 Opening Address by Assoc.Prof. Dr. Anan Tongraar

Acting Rector

Suranaree University of Technology

13.05 – 13.10 Opening Remarks by Prof. Dr. Eugene A. Bondar

Deputy Director

Khristianovich Institute of Theoretical and Applied Mechanics

13.10 – 13.15 Opening Remarks by Prof. Dr. Sibusiso Moyo

Deputy Vice Chancellor for Research, Innovation and Engagement

Durban University of Technology

13.15 – 13.45 Fomin V. M.

N.N. Yanenko — Siberian, Soldier and Scientist

13.45 – 14.15 Il’in, V. P. (postponed to Friday)

The strategies and tactics of an intelligent mathematical modeling

14.15 – 14.40 Peradzynski Z., Baghaturia G.

Double waves and Yanenko equation

Coffee Break

Chair: Pukhnachev V. P.

14.50 – 15.20 Oberlack M., Hoyas S., Kraheberger S., Alcántara-Álvila F., Laux J.,
Klingenberg D., Hollmann P., Vallikivi M., Hultmark M., Bellani G.,
Talamelli A., Zimmerman S., Klewicki J.

Classical and statistical symmetries of turbulence – the basis of turbu-
lent scaling laws of wall-bounded shear flows for arbitrary moments

15.20 – 15.45 Wac lawczyk M, Grebenev V. N., Oberlack M.

Conformal invariance of the 1-point statistics of the zero-isolines of 2𝑑
scalar fields in inverse turbulent cascades

15.45 – 16.10 Andreev V. K., Lemeshkova E. N.

On the asymptotic behavior of inverse problems for parabolic equation

16.10 – 16.35 Grebenev V. N., Demenkov A. G., Chernykh G. G.

Local equilibrium approximation in free turbulent flows: verification
through the method of differential constraints

16.35 – 17.00 Algazin S. D., Selivanov I. A. (cancelled)

About the flutter of an orthotropic plate rectangular in plan

Lunch / Dinner Break

Chair: Kaptsov O. V.

18.00 – 18.25 Manganaro N.

Method of differential constraints for nonlinear wave problems

18.25 – 18.50 Habibullin I. T.

Generalized invariant manifolds and their applications

18.50 – 19.15 Dryuma V. S.

The Riemann spaces related to the Navier-Stokes equations

19.15 – 19.40 Pavlov M. V.

Egorov hydrodynamic type systems

19.40 – 20.10 Sergyeyev A.

Integrable systems in four independent variables from contact geometry
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Coffee Break

Chair: Dorodnitsyn V. A.

20.35 – 21.00 Dyachenko S. A., Zakharov V. E., Dyachenko A. I.

On dynamics of a free boundary in 2D hydrodynamics

21.00 – 21.25 Anco S. C.

General symmetry multi-reduction method for partial differential equa-
tions with conservation laws

21.25 – 21.50 Olver, P. J.

Higher order symmetries of underdetermined systems of partial differ-
ential equations and Noether’s second theorem
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Day 2 : Tuesday, 24 August 20

Chair: Pelinovsky E.

13.00 – 13.25 Grigoriev Yu. N., Meleshko S. V., Siriwat P.

Qualitative properties and invariant solutions of the nonstationary one-
dimensional equations of a vibrationally excited gas

13.25 – 13.50 Stepanyants Y. A.

Scalar description of three-dimensional flows of incompressible fluid

13.50 – 14.15 Makarenko N. I., Maltseva J. L., Cherevko A. A.

Internal waves in two-layer stratified flows

14.15 – 14.40 Kukushkin D. E., Makarenko N. I., Shapeev V. P.

Modelling stationary flows in bounded domain

14.40 – 15.05 Karabut E. A., Zhuravleva E. N.

Using analytical continuation for solving nonlinear free boundary prob-
lems

Coffee Break

Chair: Makarenko N. I.

15.20 – 15.45 Gavrilyuk, S., Shyue K.-M.

Singular solutions of the BBM equation: analytical and numerical study

15.45 – 16.10 Chesnokov A. A., Liapidevskii V. Yu.

Internal solitary waves in a multi-layer stratified fluid: new models and
their verification

16.10 – 16.35 Baenova G. M., Sukhinin S. V., Zhumadillayeva A. K.

Features of the propagation of long Waves in phonon crystals

16.35 – 17.00 Tkachev D. L.

Lyapunov instability of the polymeric fluid flow in channel (channel
walls are perforated)

Lunch / Dinner Break

Chair: Muriel C.

18.00 – 18.25 Halder, A. K., Duba, C. T., Leach, P. G. L.

Symmetries and solutions of the modified nonlinear Schrödinger equa-
tion

18.25 – 18.50 Holba P.

Complete classification of local conservation laws for generalized
Kuramoto–Sivashinsky equation

18.50 – 19.15 Kovtunenko V. A.

Shape gradient method of equilibrium-constrained optimization for
semi-linear Stokes–Brinkman–Forchheimer’s equation

19.15 – 19.40 Paliathanasis, A.

Lie symmetries and Bohmian inhomogeneous cosmology

18.40 – 20.05 Aibinu M. O., Thakur S. C, Moyo S.

On construction of exact solutions to delay reaction-diffusion systems

Coffee Break
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Chair: Halder, A. K.

20.20 – 20.45 Bila N.

A study of the Tzitzeica curves equation

20.45 – 21.10 de la Cruz A., Diaz-Chang T., Liang Ch., Pistora J., Cada M.
(cancelled)

(2+1)-dim asymptotic variational theory for light propagating in a non-
local nonlinear dissipative medium

21.10 – 21.35 Diaz-Chang T., de la Cruz A., Liang Ch., Pistora J., Cada M.
(cancelled)

Optical Benney-Luke equation

21.35 – 22.00 Torres R.

Uniform approximation of impulsive differential systems by using a
piecewise constant argument
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Day 3 : Wednesday, 25 August 2021

Chair: Chesnokov A. A.

13.00 – 13.25 Vaneeva O. O.

Normalization property of classes of differential equations and its ap-
plication in group snalysis

13.25 – 13.50 Talyshev A. A.

Differential-invariant solutions of the Navier-Stokes equations with re-
spect to one four-dimensional group

13.50 – 14.15 Dimakis N.

Geodesic equations and nonlocal conservation laws: The exceptional
pp-wave case.

14.15 – 14.40 Siraeva D. T.

Submodels and exact solutions of the gas dynamics equations with state
equation of a special form

14.40 – 15.05 Seesanea A.

Continuous solutions to sublinear elliptic problems

Coffee Break

Chair: Paliathanasis, A.

15.20 – 15.45 Campoamor-Stursberg R.

Branching rules and subduced representations applied to the symmetry
breaking of ODEs

15.45 – 16.10 Halder, A. K., Paliathanasis, A., Almusawa, H., Leach P. G. L.

Solutions of the Boiti-Leon-Manna-Pempinelli equation using symme-
tries

16.10 – 16.35 Pinar Z., Orhan Ö.

The symmetries of the fully nonlinear Monge-Ampre equation

16.35 – 17.00 Naseer S., Raza A., Zaman F. D. and Kara A. H.

Optimal system and conservation laws for the generalized Fisher equa-
tion in cylindrical coordinates

Lunch / Dinner Break

Chair: Tsarev S. P.

18.00 – 18.25 Conte R., Grundland A. M.

Reduction of a sine-Gordon system to a sixth order Painlevé equation

18.25 – 18.50 Kudryashov N. A.

The generalized Hermite polynomials for the Burgers hierarchy and
point vortices

18.50 – 19.15 Askhabov S. N. (cancelled)

System Integro-differential equations of the convolution type with an
inhomogeneity in the linear part

Coffee Break
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Chair: Conte R.

19.35 – 20.00 Halder A. K., Almusawa H., Paliathanasis A., Leach P. G. L.

Comparative analysis of continuous Kadomtsev-Perviashvili-type equa-
tions using symmetries

20.00 – 20.25 Muriel C., Nucci M. C., Romero, J. L.

On chains of differential equations

20.25 – 20.50 Orhan Ö., Pınar Z.

Exact solutions and linearization of Ermakov-Pinney equation via the
nonlocal transformation-symmetry approach

20.50 – 21.15 Mitsopoulos, A., Tsamparlis, M.

Higher order first integrals of autonomous dynamical systems

Coffee Break

Chair: Schulz, E.

21.30 – 21.55 Cheviakov A., Dutykh D., Assylbekuly A.

Symmetry properties of a family of BBM-type equations

21.55 – 22.20 Tarayrah M. R., Cheviakov A.

All exact symmetries of higher-order ODEs are stable



Conference Program ix

Day 4 : Thursday, 26 August 2021

Chair: Kudryashov N. A.

13.00 – 13.25 Ulyanov O. N., Rubina L. I.

On some methods of reducing nonlinear partial differential equations
to systems of ordinary differential equations

13.25 – 13.50 Kaptsov O. V., Mirzaokhmedov M. M.

General solutions of some linear equations with variable coefficients

13.50 – 14.15 Kazakov A. L., Lee M.-G., Lempert A. A.

Exact solutions having diffusion wave type in nonlinear models of ther-
mal conductivity, filtration, and diffusion

14.15 – 14.40 Isaev V. I., Cherepanov A. N., Shapeev V. P.

Numerical study of heat modes of laser welding of dissimilar metals
with an intermediate insert

14.40 – 15.05 Palymskiy I. B., Palymskiy V. I.

About convection of compressed gas

Coffee Break

Chair: Andreev V. K.

15.20 – 15.45 Sharifullina T. S., Cherevko A. A., Ostapenko V. V.

Numerical modeling of cerebral arterio-venous malformation emboliza-
tion based on clinical data

15.45 – 16.10 Tsarev S. P.

Discrete orthogonal polynomials: detection of anomalies of time series
and boundary effects of polynomial filters

16.10 – 16.35 Rogalev A. N.

Symbolic methods for estimating the sets of solutions of ordinary dif-
ferential equations with perturbations on a finite time interval

16.35 – 17.00 Kulikov E. K., Makarov A. A.

On approximation functionals to minimal splines

Lunch / Dinner Break

Chair: Gavrilyuk, S.

18.00 – 18.25 Dobrokhotov, S. Yu.

Constructive uniform asymptotics of linear water waves generated by
localized sources

18.25 – 18.50 Bogdanov, A. N.

Dynamics of shock waves in media with longitudinal stratification. The
precise evolution

18.50 – 19.15 Pelinovsky E., Talipova T.

Travelling waves in 1D strongly inhomogeneous media

19.15 – 19.40 Rozanova O. S.

The Riemann problem for equations of cold plasma

18.40 – 20.05 Kaptsov E. I., Dorodnitsyn V. A., Meleshko S. V.

Conservativeness of invariant finite-difference schemes

20.05 – 20.30 Meleshko S. V., Siriwat P.

Complete set of reciprocal transformations of 2D stationary gasdynam-
ics
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Coffee Break

Chair: Meleshko, S. V.

21.10 – 21.35 Bobrovskiy V. S., Sinitsyn A. V.

Mathematical modelling of proton migration inside earthquake source
by Vlasov-Maxwell system

21.35 – 22.00 Chernykh G. G., Fomina A. V., Moshkin N. P.

Dynamics of a heated turbulent mixing zone in a linear stratified
medium
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Day 5 : Friday, 27 August 2021

Chair: Dobrokhotov, S. Yu.

13.00 – 13.25 Pukhnachev V. P.

Reading N.N. Yanenko’s papers

13.25 – 13.50 Alekseev G. V., Brizitskii R. V.

Control problems in magnetohydrodynamics for viscous incompressible
fluid

13.50 – 14.15 Vedenyapin V. V., Fimin N. N., Chechetkin V. M., Russkov A. A.,
Voronina M. Yu.

On the derivation of the equations of electrodynamics and gravitation
from the least action principle and the models of the Universe

14.15 – 14.40 Vasyutkin S. A., Chupakhin A. P.

Differentiation of similar matrices

14.40 – 15.05 Millionshchikov D.

Liouville equation and combinatorial polynomials

Coffee Break

Chair: Moyo S.

15.20 – 15.45 Bulatov M. V., Solovarova L. S.

On collocation-variation difference schemes for differential-algebraic
equations

15.45 – 16.10 Solovarova L. S., Phuong T. D.

On difference schemes for the second-order differential-algebraic equa-
tions

16.10 – 16.35 Anikin A. Yu., Rykhlov V. V.

Asymptotics for graphene in magnetic field

Coffee Break

16.50 – 17.15 Nadjafikhah M., Mahdipour–Sh. A.

Symmetry analysis of the cylindrical Helmholtz equation

17.15 – 17.40 Nakpim W., Meleshko S. V.

Conservation laws of the relativistic gas dynamics equations in La-
grangian coordinates

17.40 – 18.05 Il’in, V. P.

The strategies and tactics of an intelligent mathematical modeling

18.05 – 18.30 Vladimirov, V. A.

Distinguished Limits and Drifts: between Nonuniqueness and Univer-
sality

18.30 – 18.35 Closing Remarks by Sergey V. Meleshko
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Several physical phenomena are governed by mathematical models and can be structured by
the Reaction-Diffusion (RD) systems. RD systems are essential for the description of dynamical
processes in chemistry, biology, geology, physics (neutron diffusion theory) and ecology, to mention
just a few. In general, RD systems have the form

𝜕𝑡u = D∇2u + R(u), (1)

where u = u(r, t) represents the unknown vector function, D is a diagonal matrix of diffusion
coefficients, ∇2 is the Laplace operator which acts on the vector u componentwise and R accounts
for all local reactions. Construction of solutions of RD equations of the form (1) with a single
unknown function has been studied in [1, 2, 3, 4]. Predator-prey, competition of species for a
common food source and symbiotic relationship between two species are common examples of
models which cannot be described by RD equations with a single unknown function. This study
presents a number of new exact solutions to nonlinear RD systems of the form (1) with delay
and which have multiple unknown functions. The solutions to RD systems with delay which are
presented in this study are suitable to formulate test problems intended to evaluate the accuracy
of numerical methods for solving nonlinear delay PDEs.
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Control Problems in Magnetohydrodynamics for Viscous
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During recent years control theory for hydrodynamic, thermal and electromagnetic fields in
liquid media has been intensively developed. One of the aims of the theory is to establish the
most effective mechanism for controlling physical fields in continuous media. The mathematical
description of this type of problems includes three components: the purpose, the control mecha-
nisms used to achieve the desired purpose, and the constraints such that the state and the controls
of the model under consideration should satisfy them. The role of constraints is usually played by
hydrodynamic, magnetohydrodynamic (MHD), electromagnetic and some other equations together
with boundary and initial conditions, while the desired purpose is achieved by minimizing a certain
cost functional.

The problems of controlling MHD-flows of electrically and heat-conducting fluid historically
have first arisen in metallurgy and foundry during the development of optimal technologies for
contactless electromagnetic stirring of molten metals and in the nuclear industry in the creation
of effective liquid-metal cooling systems for nuclear power units. Later, the necessity for solving
control problems was brought about by the problems arising in the creation of plants for the
industrial growth of crystals by the methods of melting and dissolution and the development of
new submarine engines [1].

This paper presents some results obtained by the authors in a rigorous study of control problems
for two models of magnetohydrodynamics of viscous fluid. The first model consists of the Navier-
Stokes equations for the dynamics of viscous incompressible fluid and Maxwell’s equations without
exterior currents for electromagnetic field, interconnected through the Lorentz force and the gener-
alized Ohm’s law for moving fluid. The second model is obtained by adding the convection-diffusion
equation for the temperature of medium and other additional terms, which take into account the
influence of thermal effects of the movement of fluid, to the first model. The results obtained by
the authors are partially presented in [1].

The authors gratefully acknowledge financial support by the Ministry of Science and Higher
Education of the Russian Federation (project no. 075-02-2020-1482-1, additional agreement of
21.04.2020)
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About the Flutter of an Orthotropic Plate Rectangular in Plan
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The authors’ previous paper [1] presented the results of solving the problem of free vibrations
of an orthotropic clamped rectangular plate. Below we consider the flutter of a pinched orthotropic
plate, streamlined, on one side, by an airflow. The mathematical model of plate flutter constructed
by A.A. Ilyushin and I.A. Kiyko [2] is accepted. The effective algorithm for solving the problem
was developed by the first author, and I.A. Kiyko [3]. The basis of the technique is the construction
of a discrete bi-harmonic operator [4]. The software package is arranged in such a way that it is
possible to find the critical flutter velocity and build the corresponding eigenform in an arbitrary
direction of the airflow velocity vector. As standard, the critical flutter velocity is searched for
on two grids. Previously, this problem in a slightly different formulation was considered in [5] in
the direction of the velocity vector of airflow only along the x-axis. The flutter of an isotropic
rectangular plate was previously considered in [6]. In this paper, these results are generalized to a
rectangular orthotropic plate.

Consider a rectangular plate that occupies a region in the 𝑥𝑦 plane 𝑆 : {−1 ≤ 𝑥 ≤ 1, −𝑏 ≤ 𝑦 ≤
𝑏}:

𝐿𝜑+ 𝛽�⃗� 𝑔𝑟𝑎𝑑𝜑 = 𝜆𝜑, 𝜌ℎ𝜔2 + 𝛽𝜔 + 𝜆 = 0, 𝛽 = 𝑘𝑝0/𝑐0, �⃗� = (𝑉𝑥, 𝑉𝑦) . (1)

𝑥, 𝑦 ∈ Γ, 𝜑 = 0, 𝑀 (𝜑) = 0. (2)

𝐿𝜑 = 𝐷𝑥
𝜕4𝜑

𝜕𝑥4
+ 2𝐷𝑥𝑦

𝜕4𝜑

𝜕𝑥2𝜕𝑦2
+𝐷𝑦

𝜕4𝜑

𝜕𝑦4
.

Let us apply an interpolation formula for the function 𝜑 = 𝜑 (𝑥, 𝑦) in (1),(2) in the rectangle that
satisfies the marginal clamping conditions:

𝜑 (𝑥, 𝑦) =
𝑛∑︀

𝑖=1

𝑚∑︀
𝑗=1

𝑀𝑖0(𝑧)𝐿𝑗0(𝑥)𝜑 (𝑥𝑗 , 𝑦𝑖) ,

𝑦 = 𝑏𝑧, 𝑧 ∈ [−1, 1], 𝑥 ∈ [−1, 1];

𝐿𝑗0(𝑥) = 𝑙(𝑥)
𝑙′(𝑥𝑗)(𝑥−𝑥𝑗)

, 𝑙(𝑥) = (𝑥2 − 1)2𝑇𝑛(𝑥), 𝑇𝑛(𝑥) = cos𝑛 arccos𝑥;

𝑥𝑗 = cos 𝜃𝑗 , 𝜃𝑗 = (2𝑗 − 1)𝜋/(2𝑛), 𝑗 = 1, 2, ..., 𝑛;

𝑀𝑖0(𝑧) = 𝑀(𝑧)
𝑀 ′(𝑧𝑖)(𝑧−𝑧𝑖)

, 𝑀(𝑧) = (𝑧2 − 1)2𝑇𝑚(𝑧);

𝑧𝑖 = cos 𝜃𝑖, 𝜃𝑖 = (2𝑖−𝑚)𝜋/(2𝑚), 𝑖 = 1, 2, ...𝑚.

In order to obtain a discrete operator 𝐿 matrix, it is required to apply this operator to the inter-
polation formula. As a result, we obtain an asymmetric matrix 𝐻 of size 𝑁 ×𝑁 , 𝑁 = 𝑚𝑛. Let us
first number the nodes in the rectangle (𝑥𝑗 , 𝑦𝑖) by X and then by Y, i.e. from top to bottom, from
right to left. As a result, we obtain that 𝐿𝑤 is approximately replaced by the relation 𝐻𝑤, where
𝜑– is the vector of function values 𝜑 = 𝜑(𝑥, 𝑦) in the nodes of the grid.
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A powerful application of symmetries is finding symmetry-invariant solutions of nonlinear dif-
ferential equations. These solutions satisfy a reduced differential equation with one fewer inde-
pendent variable. It is well known that a double reduction occurs whenever the starting nonlinear
differential equation possesses a conservation law that is invariant with respect to the symmetry.

Recent work has developed a broad generalization of the double-reduction method by con-
sidering the space of invariant conservation laws with respect to a given symmetry group. The
generalization is able to reduce a nonlinear partial differential equation (PDE) in 𝑛 variables to an
ODE with 𝑚−𝑛+ 2 first integrals where 𝑚 is the dimension of the space of invariant conservation
laws.

In this talk, a summary of the general multi-reduction method will be presented, with applica-
tions to obtaining invariant solutions of physically interesting PDEs.
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On the Asymptotic Behavior of Inverse Problems for Parabolic
Equation
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We study two inverse initial-boundary value problems for a linear parabolic equation. These
equations arise in mathematical modeling of the viscous heat-conducting fluid motion with two
or one free boundaries. The unknown function of time enters the right-hand side of the equation
additively and is found from the additional condition of integral overdetermination. For both
problems, a priori estimates of solutions in the uniform metric are obtained. Stationary solutions
are found. Sufficient conditions for the input data, under which the solutions with increasing time
tend to the stationary regime according to the exponential law, are established.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establishment
and development of regional Centers for Mathematics Research and Education (Agreement No.
075-02-2020-1631).
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Constructive Semi-classical Asymptotic Formulas for Quasimodes of
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We propose constructive semi-classical asymptotics for the eigenfunctions of the Dirac operator
describing graphene in a constant magnetic field. Two cases are considered: (a) a strong magnetic
field, and (b) a radially symmetric electric field with low mass. The problem is reduced by standard
semi-classical methods to a pencil of magnetic Schrödinger operators with a correction. In both
cases, the classical system defined by the main symbol turns out to be integrable, but the correction
destroys the integrability. In case (a), where the correction removes the frequency degeneracy
(resonance), using the averaging method, we reduce the problem to an integrable system not only
in the leading approximation, but also with the correction taken into account. The tori of the
resulting system generate a series of asymptotic eigenfunctions of the original operator. In case
(b), the system defined by the main symbol is nondegenerate. Fixing an invariant torus with
Diophantine frequencies for this system and finding a solution of the transport equation for it, we
obtain a series of asymptotic eigenfunctions that are in one-to-one correspondence with tori that
satisfy the Bohr-Sommerfeld rule and lie in a small neighborhood of the chosen Diophantine torus.
In both cases, the construction of the asymptotics of the eigenfunctions is based on the global
representation in terms of the Airy function and its derivative for the Maslov’s canonical operator
on a two-dimensional torus projected onto the configuration space into an annular domain with two
simple caustics. We also give some numerical examples that illustrate that the obtained formulas
are efficient.

The work was supported by the Russian Science Foundation (project No. 16-11-10282).
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System Integro-Differential Equations of the Convolution Type with
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Questions are considered concerning the existence, uniqueness, search and properties of solu-
tions to a system of nonlinear integro-differential equations of the form::

𝑢𝛼𝑖 (𝑥) =

𝑛∑︁
𝑗=1

𝑥∫︁
0

𝑘𝑖𝑗(𝑥− 𝑡) · 𝑢′𝑗(𝑡) 𝑑𝑡+ 𝑓𝑖(𝑥), 𝛼 > 1 , 𝑥 > 0 , 𝑖 = 1, 𝑛 , (1)

where 𝑘(𝑥) =
{︀
𝑘𝑖𝑗(𝑥)

}︀𝑛
𝑖,𝑗=1

𝑓(𝑥) =
{︀
𝑓𝑖(𝑥)

}︀𝑛
𝑖=1

satisfy on [0,∞) the conditions:

𝑘𝑖𝑗 ∈ 𝐶2[0,∞), 𝑘′𝑖𝑗(𝑥) is not decreasing on [0,∞), 𝑘𝑖𝑗(0) = 0 and 𝑘′𝑖𝑗(0) = 𝑝𝑖𝑗 > 0. (2)

𝑓𝑖 ∈ 𝐶1[0,∞), 𝑓𝑖(𝑥) is not decreasing on [0,∞) and 𝑓𝑖(0) = 0. (3)

In connection with applications in hydrodynamics, models of population genetics, etc. (for
more details see [1]), solutions to system (1) are sought in the cone

𝑄1
0,𝑛 =

{︀
𝑢 : 𝑢 = {𝑢𝑖}𝑛𝑖=1, 𝑢𝑖 ∈ 𝐶[0,∞) ∩ 𝐶1(0,∞), 𝑢𝑖(0) = 0 𝑢𝑖(𝑥) > 0 𝑥 > 0

}︀
.

A priori estimates for the solution of system (1) are obtained, on the basis of which the global
theorem on the existence and uniqueness of the solution is proved by the method of weighted
metrics and it is shown that it can be found by the method of successive approximations. In
particular, the following are true

Lemma 1. Let conditions (2) and (3) be satisfied. If 𝑢 ∈ 𝑄1
0,𝑛 is a solution to system (1), then

𝐹𝑛(𝑥) ≤ 𝑢𝑖(𝑥) ≤ 𝐺𝑛(𝑥) 𝑥 ∈ [0,∞) 𝑖 = 1, 𝑛, where

𝐹𝑛(𝑥) ≡
[︂

(𝛼− 1)𝑛 𝑝

𝛼

]︂1/(𝛼−1)

𝑥1/(𝛼−1), 𝐺𝑛(𝑥) ≡

⎡⎣𝑛 𝑛∑︁
𝑖,𝑗=1

𝑘𝑖𝑗(𝑥) +

(︃
𝑛∑︁

𝑖=1

𝑓𝑖(𝑥)

)︃(𝛼−1)/𝛼
⎤⎦1/(𝛼−1)

,

𝑝 = min
1≤𝑖,𝑗≤𝑛

𝑝𝑖𝑗.

Theorem 1. If conditions (2), (3) are satisfied, sup
0<𝑥≤𝑏

(︁ 𝑛∑︀
𝑖=1

𝑓𝑖(𝑥)
)︁(𝛼−1)/𝛼

/𝑥 < ∞, where 𝑏 > 0 is

any number, and max
1≤𝑖≤𝑛

𝑛∑︀
𝑗=1

𝑘′𝑖𝑗(𝜂𝑖𝑗) < 𝛼 ·𝑝 ·𝑛 for some 𝜂𝑖𝑗 > 0, then the system of equations (1) has

a unique solution in 𝑄1
0,𝑛. This solution can be found by the method of successive approximations.

Under more general assumptions with respect to the kernel 𝑘(𝑥), it is proved that in the case
0 < 𝛼 < 1 system (1) with 𝑓 = 0 can have only a trivial solution 𝑢 = 0.

The work was carried out as part of the implementation of the state assignment for the project
”Nonlinear singular integro-differential equations and boundary value problems” in accordance
with the Agreement of December 29, 2020 N 075-03-2021-071.
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Features of the Propagation of Long Waves in Phonon Crystals, the
Influence of the Concentration and Polydispersity of the components
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The relevance of the research is determined by the need to model wave propagation in hetero-
geneous media. These studies are necessary for the tasks of flaw detection, the development of
non-destructive testing methods, geophysics, engineering geophysics and other methods of acoustic
research. Direct studies of wave propagation in such media are impossible, therefore, methods of
averaging the main characteristics of a heterogeneous medium are almost always used. Modeling of
heterogeneous media using phonon crystals is essentially one of these methods. A fundamental cell
characteristic of a heterogeneous medium is determined, which contains 2 connected regions filled
with one of the components ”1” and ”2”, the sizes of these regions are determined by volume con-
centrations. Such a medium can be considered a monodisperse phonon crystal, if the fundamental
cell contains more than 1 region with component ”1”and component ”2”, then it is polydisperse.
It should be noted that the waves in phonon crystals are dispersing [1, 4]. This paper presents the
results of numerical and analytical studies of the effect of polydispersity of two-component phonon
crystals on the propagation of long waves in the first transmission band at the same concentrations
of the two components.

1. For the first time, a significant effect of polydispersity on the dispersion relations, phase and
group velocities for long dispersing waves in a phonon crystal was discovered.

2. The dispersion of the phonon crystal components can be close to the formation and decay
of the fundamental cell into smaller ones by 2-3 times. In this case, the phase and group
velocities also change in the corresponding number of times.

The results of numerical and analytical studies of wave propagation in mono-and polydisperse
structures for known components of phonon crystals, water - air, porous concrete, brick, and oth-
ers are presented. For example, a fundamental cell was taken as part of a medium consisting of
two permeable media in the form of a chain of air and water bubbles. The solution and character-
istics of the oscillations are obtained in comparison with a monodisperse medium in which all the
components of the media become close in size to each other.
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The Tzitzeica curve equation is an intriguing nonlinear ordinary differential equation arising
in differential geometry that is satisfied by a space curve for which the ratio of its torsion and
the distance from the origin to its osculating plane at an arbitrary point of the curve is constant.
The class of curves has been introduced by the Romanian geometer Gheorghe Tzitzeica in 1911
in his study on affine invariants. Nowadays, there are known only a few examples of Tzitzeica
curves defined explicitly in terms of the elementary functions. Interestingly, although the Tzitzeica
curves have occurred occasionally in the mathematics literature, the ordinary differential equation
defining these curves has not been studied extensively so far, maybe due to the fact that Tziteica
curves are defined by a nonlinear ordinary differential equation whose unknowns are the curves
defining functions. The aim of this talk is to present several techniques for finding Tzitzeica
curves along with symmetry reductions associated with their defining equation. A side condition
involving the Wronskian of the curves defining functions is considered. It is shown that the Tzitzeica
curve equation can be reduced to an auxiliary third order linear homogeneous ordinary differential
equation with constant coefficients for the defining functions of the curve and a linear equation
for the equation’s constant. An interesting connection between Tzitzeica curves and generalized
hypergeometric functions is also introduced. Additionally, a systematic method for determining
Tzitzeica curves is proposed, and new solutions are presented.
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Mathematical Modelling of Proton Migration Inside Earthquake
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We consider the Vlasov-Maxwell (VM) system with external magnetic field to model protonic
hydrogen migration for travelling wave solutions to ground motion problems. Firstly, we prove
existence of quasi-stationary solutions of VM system in a bounded domain for nonlinear nonlocal
elliptic system via the sub-super solution method. The next part provides the existence theorem for
the Poisson external boundary value problem. The magnetic field is found as a coupling of solutions
of two boundary value problems: the first one for the potential U(x,t) of self-consistent electro-
magnetic field and the second one is external boundary value problem for potential of magnetic
field. Further, a numerical illustration of the results is considered. The fast finite element method
is used to solve the three-dimensional nonlinear hyperbolic equation in the bounded domains sup-
plemented by the transport equation through inflow condition. Model reports new scientific result:
first imaging of proton migration giving a unique source location. The model can be used to
produce accurate strong earthquakes final source predictions ahead of time and to assess the un-
certainty regarding the factors controlling the ground motion. Decision makers, either public and
private, can use this information to make decisions, against a risk metric, on the mobilization of a
wide range of capacities to mitigate earthquake consequences.
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Dynamics of Shock Waves in Media with Longitudinal Stratification.
The Precise Evolution

A. N. Bogdanov
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The study of the dynamics of shock waves (SW) in inhomogeneous gaseous media is one of the
topical problems in connection with applications [1]. Problem statements of this kind are a natural
development of classical studies on the dynamics of shock waves in a homogeneous medium [2].
Chiznell is considered the first in this direction [3]. The complexity of the study of these problems in
the general case initially determined the way to search for their particular solutions under certain
kind of conditions. For some types of density stratification ahead of the SW front, self-similar
solutions were obtained: Sakurai [4] investigated such solutions in the case of a power-law density
change; for an exponential decrease in density, self-similar solutions were constructed by Hayes
[5]. Plane, axisymmetric, and spherical shock waves in a gas of variable density varying according
to a power law in the direction of wave motion were investigated in self-similar regimes by F.L.
Chernousko [6]. The propagation of hydrocarbons in a gaseous medium with an exponential density
distribution was investigated by A.S. Kompaneets [7]. A very original mathematical approach to
the problem of propagation of a one-dimensional shock wave in a quiescent polytropic gas with a
given, one-dimensional, pressure distribution was presented by L.V. Ovsyannikov [8]. An overview
of the achievements made by the end of the 1970s and the presentation of his own original results
in this area is devoted to Ch. 8 of the monograph by J. Whitham [9]. Although Whitham’s results
were quite close to [4] and [5], the originality of the method for obtaining the dependence of the
perturbation rate on the parameters of the medium left questions (acknowledged by the author
[9]) about the validity of the results obtained. Numerical calculations of the motion of shock waves
in an inhomogeneous medium were carried out in [10]. Cases of the passage of a hydrocarbon
layer of constant increased or decreased density and temperature at constant pressure, as well as a
different molecular weight and adiabatic exponent, were considered. The results were presented in
the form of graphs, analytical dependences for them were not displayed. An analytical approach
to the study of shock waves in inhomogeneous media was proposed [11] by the author of this work,
the results obtained in this and other ways in their development are presented in the report.

Asymptotic methods are very flexible, acting decisively, one can get an answer of a rather
complex problem - this rule was perceived by the author through O.S. Ryzhov.
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Consider the system of linear differential equations

𝐴(𝑡)𝑥′(𝑡) +𝐵(𝑡)𝑥(𝑡) = 𝑓(𝑡), 𝑡 ∈ [0, 1], (1)

𝑥(0) = 𝑥0, (2)

where 𝐴(𝑡), 𝐵(𝑡) are (𝑛×𝑛)-matrices, 𝑓(𝑡) and 𝑥(𝑡) are the given and the unknown 𝑛-dimensional
vector-functions, respectively.

If
𝑑𝑒𝑡𝐴(𝑡) ≡ 0, (3)

then systems of the form (1),(2) are called differential-algebraic equations (DAEs). It is assumed
that input data are smooth enough for further reasoning and the solution satisfies the initial
condition (2).

The difficulties of numerical solution of the DAE and ordinary differential equations are dis-
cussed. Collocation-variation difference schemes is proposed for solving problem (1),(2) with con-
dition (3). Their construction is based on an idea from [1],[2]. The analysis of the particular cases
of the schemes and the numerical calculations of the test examples are given.

The authors gratefully acknowledge financial support by RFBR grants 20-51-S52003, 20-51-
54003, 18-29-10019.
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Realizations of Lie algebras in terms of vector fields in connection with the representation the-
ory and the branching rule problem associated to embeddings of simple Lie algebras are considered.
This allows to determine if a subalgebra in a given realization corresponds to an irreducible embed-
ding, as well as to determine multiplicities in the branching rules. The invariants of the realizations
associated to such embeddings determine second-order (non-conservative Lagrangian) dynamical
systems invariant by a certain symmetry group 𝐺 (of Lie point and/or Noether symmetries). The
analysis of the branching rules and the corresponding invariants provides an effective tool to decide
whether the symmetry can be broken to a given subgroup 𝐾 ⊂ 𝐺, eventually leading to an algo-
rithmic construction of dynamical systems with exact symmetry group 𝐾 and given conservation
laws.

The author gratefully acknowledges financial support by the research grants MTM2016-79422-
P (AEI/FEDER, EU) and PID2019-106802GB-I00/AEI/10.13039/501100011033 (AEI/ FEDER,
UE).
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Evolution of localized regions of turbulized fluid (turbulent spots) has a considerable effect on
the formation of fine microstructure of hydrophysical fields in the ocean [1]. A brief overview of
research on the dynamics of turbulent spots in a stably stratified fluid at rest can be found in [2].
The evolution of laminar spots of mixed liquid of non-zero buoyancy (thermals) plays an important
role in the formation of fine structures of ocean water, creation of clouds, and many other natural
phenomena [3].

In the present work, the averaged Naiver-Stokes equations with the Oberbeck-Boussinesq ap-
proximation are used to construct a numerical model of the dynamics of a flat heated turbulized
region of non-zero buoyancy in a linearly stratified medium. Unknown values of the dissipation
rate and Reynolds stresses are found via numerical integration of the differential equations. The
turbulent fluxes and density fluctuation variance are found from the locally equilibrium algebraic
relations. The algorithm to the problem solution uses finite-difference methods based on the ex-
plicit splitting in the physical processes and spatial variables method with weighted approximation
of convective terms. At each time step the equations of turbulence characteristics are solved with
application of implicit splitting method on spatial variables [4].

It is shown that a weakly heated laminar localized region of mixed fluid generates internal waves
of a significantly greater amplitude in comparison with a spot of non-zero buoyancy. Presence of
non-zero buoyancy leads to essential increase in the geometrical dimensions of the turbulent spot
and generation of internal waves of greater amplitude in comparison with an evolution of turbulent
spot of zero buoyancy. The recent work is a continuation and development of research [2].
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We derive a new family of mathematical models describing the propagation of internal waves in
a stratified shallow water with a non-hydrostatic pressure distribution in the Boussinesq approxi-
mation. The construction of the models is based on the use of additional instantaneous variables.
This allows one to reduce the dispersive multilayer GreenNaghdi-type model to a first-order sys-
tem of evolution equations. The advantage of the proposed models is the simplicity of numerical
implementation and realization of non-reflecting boundary conditions.

We consider three-layer flows over an uneven bottom with the additional assumption of hydro-
static pressure in the intermediate layer [1]. The hyperbolicity conditions of the obtained equations
for three-layer flows are formulated, and solutions in the class of travelling waves are studied. Nu-
merical simulation of the propagation and interaction of symmetric and non-symmetric soliton-like
waves is performed. Numerical calculations of the generation and propagation of internal soli-
tary waves are carried out and their comparison with experimental data (Deepwell et al, 2019;
Liapidevskii and Gavrilov, 2018) is given. In particular, mode-2 non-symmetric internal solitary
wave described by the obtained model is shown in the figure. Bold solid curves correspond to the
interfaces; coloured picture presents snapshot of experiment Liapidevskii and Gavrilov, 2018; blue
colour inside of the wave shows the initially coloured fluid trapped by the wave.
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More general models, including an arbitrary number of intermediate hydrostatic layers, are also
derived and used to describe the propagation of large-amplitude near-bottom and/or near-surface
internal waves [2]. Stationary solutions of the governing equations are studied and conditions for
the formation of mode-1 internal solitary waves are formulated. The results of numerical modelling
based on these equations are verified by comparison with field observations (Preusse et al, 2012;
Lien et al, 2014; Liapidevskii et al, 2017; Kukarin et al, 2019).

This work was supported by the Russian Science Foundation (project 20-11-20189).
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The Benjamin-Bona-Mahony (BBM) equation, originally derived by Peregrine [1] is given by

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑢𝑥 − 𝑢𝑥𝑥𝑡 = 0 . (BBM)

It possesses Hamiltonian and Lagrangian descriptions, exact solitary wave-type solutions, and has
a bounded dispersion relation. An important drawback of (BBM) as a physical model is the
absence of the Galilean invariance. A modified version of the PDE (BBM) recovering the Galilean
invariance and having the same order of approximation was proposed in Ref. [2]

𝑢 𝑡 + 𝑢 𝑥 + 𝑢𝑢 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝑢𝑢 𝑥 𝑥 𝑥 = 0 . (iBBM)

Unlike the original BBM model, the Galilei-invariant PDE (iBBM) lacks the conservation of energy.
The remedy to that is a further modification with the same order of approximation,

𝑢 𝑡 + 𝑢 𝑥 + 𝑢𝑢 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝑢𝑢 𝑥 𝑥 𝑥 − 2𝑢 𝑥 𝑢 𝑥 𝑥 = 0 . (eBBM)

which is both Galilei-invariant and energy-preserving. We further introduce a one-parameter family
of equations

𝑢 𝑡 + 𝑢 𝑥 + 𝑢𝑢 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝐴 (𝑢𝑢 𝑥 𝑥 𝑥 + 2𝑢 𝑥 𝑢 𝑥 𝑥) = 0 , (A)

that include both the (BBM) when 𝐴 = 0, and the (eBBM) when 𝐴 = 1. All PDEs (A) share the
Hamiltonian and Lagrangian structures. We perform a comprehensive study local and nonlocal
symmetries and conservation laws of the family (A). In particular, cases with additional local
conservation laws are the (eBBM) (𝐴 = 1) and the additional case 𝐴 = 1/3:

𝑢 𝑡 + 𝑢 𝑥 + 𝑢𝑢 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 1

3
𝑢𝑢 𝑥 𝑥 𝑥 − 2

3
𝑢 𝑥 𝑢 𝑥 𝑥 = 0 (eBBM1/3)

possessing higher-order symmetries and a large number of additional conservation laws. We show
that (eBBM1/3) is related to the Camassa-Holm equation

𝑢 𝑡 + 3𝑢𝑢 𝑥 − 2𝑢 𝑥 𝑢 𝑥 𝑥 − 𝑢 𝑥 𝑥 𝑡 − 𝑢𝑢 𝑥 𝑥 𝑥 = 0 .

by a simple point transformation. We also consider traveling wave reductions and perform nu-
merical investigations of bump evolution, energy conservation, and solitary wave interaction of the
BBM-type models (BBM), (iBBM), (eBBM), and the integrable PDE (eBBM1/3).

A.C. is grateful to NSERC of CANADA for research support through the Discovery grant
RGPIN-2019-05570. D.D. acknowledges support from the Fédération de Recherche en Mathéma-
tiques Auvergne-Rhône-Alpes (FR 3490). The work of D.D. has also been supported by the French
National Research Agency, through Investments for Future Program (ref. ANR-18-EURE-0016–
Solar Academy). The research of A.A. was supported by Kazakhstan Ministry of Education and
Science (AP08053154).
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We establish all the reductions of the system of two coupled 2+1-dimensional sine-Gordon
equations introduced by Konopelchenko and Rogers to ordinary differential equations (ODE).
There is only one such reduction, to an ODE of Chazy, algebraic transform of the sixth Painlevé
equation. Various degeneracies also lead to the fifth, third and second Painlevé equations and to
elliptic functions.
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We propose and demonstrate analytically, within the framework of a hydrodynamic model, a
novel and simpler variational approach to study the asymptotic behavior of a continuous wave
(cw) laser beam propagating in a weakly absorbing defocusing nonlinear nonlocal media. The
Kadomtsev-Petviashvili (KP) type equation is obtained. For the first time, to the best of our
knowledge, the variational multiscale asymptotics method is used to describe nonlinear open sys-
tems. The starting point in the analysis is the light propagation in a weakly nonlocal nonlinear
defocusing medium described by [1] normalized NLSE with a dissipative term and a diffusion-like
equation for the response of the nonlocal medium

𝑖 𝜖
𝜕Ψ

𝜕𝑧
+
𝜖2

2
∇2 Ψ − Θ Ψ = −𝑖 𝜖 𝛼

2
Ψ and − 𝜎2 ∇2 Θ + Θ = |Ψ|2, (1)

where ∇2 = 𝜕2𝑥 + 𝜕2𝑦 . The 𝑧 and r = (𝑥, 𝑦) are the spatial evolutionary variable and the trans-
verse coordinates, respectively. Ψ is the complex electric field envelop peak intensity, Θ is a real
function that denotes the nonlinear nonlocal change of the refractive index depending on the in-
tensity. 𝛼 is the intensity loss rate and 𝜖 ≪ 1 is a small quantity that deal with the weakly
diffracting regime. The parameter 𝜎 is a spatial scale (setting the diffusion length) that measures
the degree of nonlocality. A hydrodynamic model with the help of the Mandelung transforma-
tion Ψ(𝑧, r) = 𝜌1/2(𝑧, r) exp[ 𝑖 ℎ(𝑧, r) ]. Both functions Ψ and Θ are assumed to be non-zero at
the boundaries (infinities). Using Ψ(𝑧, r) = 𝜓𝑏(𝑧)𝜓(𝑧, r) and Θ(𝑧, r) = 𝜃𝑏(𝑧)𝜙(𝑧, r) in the above
system of equations, the background equations 𝜓𝑏(𝑧) and 𝜃𝑏(𝑧) are to be determined as well. We
propose that above system of equations can be derived from the appropriate Lagrangian density

𝐿 = 𝜌

[︃
(∇ℎ)

2

2
+
𝜕ℎ

𝜕𝑧
+ 𝜙− 1

]︃
− 1

2

[︁
𝜙2 + (𝜎∇𝜙)

2 − 1
]︁

+

(︀
∇√

𝜌
)︀2

2
.

By means of the stretched variables 𝜉 = 𝜖1/2 (𝑥− 𝑧) , 𝜂 = 𝜖 𝑦 , 𝜏 = 𝜖3/2 𝑧, it is possible to write the
Lagrangian as

𝐿 = 𝜖 𝐿(1) + 𝜖2 𝐿(2) + 𝜖3 𝐿(3) + 𝒪(𝜖4).

Introducing the variable transformations 𝜏 → −(8𝛾) 𝜏 , 𝜂 → (
√︀

3|𝛾|/2) 𝜂 and 𝑢 = −(𝛾/2)𝑈 , we
arrive to a KP equation [2]

𝜕𝜉
(︀
𝑈𝜏 + 6𝑈2

𝜉 + 𝑈𝜉𝜉𝜉 + 3 𝜍2 𝑈𝜂𝜂

)︀
= 0.

where 𝜍2 = −sgn𝛾.

Artorix de la Cruz thanks the financial support from Killam Trust Predoctoral and Nova Scotia
Research scholarships.
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We analyze, within the framework of an Optical Benney-Luke equation (OBLE), the light
propagation in a nonlocal nonlinear defocusing media. The exact solitary wave (SW) profiles, for
the light intensity and its phase chirp, have been obtained analytically in terms of the optical
surface tension, which depends on the degree of nonlocality. The solutions dynamics have been
demonstrated numerically. Our results show that the OBLE satisfies the reported ”homeomor-
phism” between optics and shallow-water waves and gives an insight into the nonlocal nonlinear
Schrödinger equation (NLSE) evolution in the intermediate asymptotics regime. The starting point
in the analysis is the light propagation in a weakly nonlocal nonlinear defocusing medium described
by [1] normalized NLSE with a dissipative term and a diffusion-like equation for the response of
the nonlocal medium

𝑖 𝜖
𝜕Ψ

𝜕𝑧
+
𝜖2

2

𝜕2 Ψ

𝜕𝑥2
− Θ Ψ = 0 and − 𝜎2 ∇2 Θ + Θ = |Ψ|2, (1)

The 𝑧 and 𝑥 are the spatial evolutionary variable and the transverse coordinates, respectively. Ψ
is the complex electric field envelop peak intensity, Θ is a real function that denotes the nonlinear
nonlocal change of the refractive index depending on the intensity. The 𝜖 ≪ 1 is a small quantity
that deal with the weakly diffracting regime. The parameter 𝜎 is a spatial scale (setting the
diffusion length) that measures the degree of nonlocality. The solutions can be proposed in the
form 𝜓 = 𝜓0

√
𝜌 exp(−𝑖|𝜓0|2𝑧 + 𝑖 𝜖1/2Φ). A scaled Benney-Luke equation [2] is obtained as

𝜕2Φ

𝜕𝑍2
− 𝐶2 𝜕

2Φ

𝜕𝑋2
+ 𝜖

[︃
𝜎

4

𝜕4Φ

𝜕𝑋4
+

1

2

𝜕

𝜕𝑍

(︂
𝜕Φ

𝜕𝑋

)︂2

+
𝜕

𝜕𝑋

(︂
𝜕Φ

𝜕𝑍

𝜕Φ

𝜕𝑋

)︂]︃
= 0, (2)

Let us propose traveling wave solutions in the form Φ(𝑋,𝑍) = 𝑉 (𝑋−𝑍) ≡ 𝑉 (𝜂). Integrating once
and changing the variable as 𝜙 = 𝑑𝑉/𝑑𝜂, we obtain the following relation

Integrating (2) one obtains the phase Φ associated with this solution, which in terms of the
original (dimensionless) coordinates, 𝑥 and 𝑧 reads:

Φ(𝑥, 𝑧) =

√︂
− 𝛾 𝐻

𝜖
tanh

[︂
1

𝑊
𝑥− 𝑣𝑔 𝑧

]︂
, (3)

where 𝑣𝑔 =
√︀
−(𝜖𝐻)/𝛾 and 𝑊 = −(𝛾/𝐻)

√︀
−𝐻/𝛾,𝐻 = (1 − 𝐶2)/𝜖.

As a function of the original (dimensionless) 𝑧 and 𝑥, one may write down an approximate [up

to order 𝒪(𝜖)] solution for the macroscopic wavefunction 𝜓 ∼ 𝜓0 (𝜌0 + 𝜖 𝜌1)
1/2

and 𝑛 = 𝑛0 + 𝜖 𝑛1
as follows:

𝜓 = 𝜓0

√︃
1 − 𝜖1/2

|𝜓0|2
𝜕Φ

𝜕𝑧
exp(−𝑖|𝜓0|2𝑧 + 𝑖𝜖1/2Φ), and 𝑛 = |𝜓0|2 − 𝜖1/2

𝜕Φ

𝜕𝑧
, (4)
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Geodesic Equations and Nonlocal Conservation Laws:
The Exceptional pp-Wave Case

N. Dimakis
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In this work we review nonlocal conservation laws for geodesic systems of massive particles and
their connection to the existence of proper conformal Killing vectors [1]. In the case where the
metric is that of a pp-wave geometry, we demonstrate that the aforementioned conserved quantities
acquire, equivalent on the mass shell, local expressions [2]. The latter are generated by disformal
transformations of the metric. We observe how the resulting generators can be obtained as “point
symmetries” by slightly modifying the Noether symmetry approach. Furthermore, we study their
relation to actual Noether symmetries, of higher order, which produce rational in the momenta
integrals of motion for the geodesic problem.
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Constructive Uniform Asymptotics of Linear Water Waves
Generated by Localized Sources
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We discuss an elementary constructive method for constructing effective uniform asymptotics
in wide neighborhoods of simple standard and non-standard caustics for linear differential and
pseudodifferential equations. The term simple caustic means that it is an (𝑛− 1)- D surface in the
𝑛-D physical space of the problem under consideration We illustrate the method by the example
of the Cauchy-Poisson problem for the linear water waves over an uneven bottom with localized
initial data. Non-standard caustics in this case is the leading front edge.
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The Riemann Spaces Related to the Navier-Stokes Equations

V. S. Dryuma
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For solving system of the Navier-Stokes equations 𝜕
𝜕𝑡 �⃗� +

(︁
�⃗� · ∇⃗

)︁
�⃗� = 𝜇∆�⃗� +∇⃗𝑃 (�⃗�, 𝑡), ∇⃗· �⃗� =

0, where �⃗� (�⃗�, 𝑡) -is the fluid velocity, 𝑃 (�⃗�, 𝑡)- is the pressure and 𝜇- is the viscosity of liquid, was
used their representation in form of the laws of conservations:

𝜕

𝜕𝑦
𝐻(�⃗�, 𝑡) − 𝜕

𝜕𝑥
𝐸(�⃗�, 𝑡) = 0,

𝜕

𝜕𝑧
𝐻(�⃗�, 𝑡) − 𝜕

𝜕𝑥
𝐵(�⃗�, 𝑡) = 0,

𝜕

𝜕𝑧
𝐸(�⃗�, 𝑡) − 𝜕

𝜕𝑦
𝐵(�⃗�, 𝑡) = 0

This allow us to introduce six-dimension Riemann space, equipped by the metric ds2 = −2𝐵(�⃗�, 𝑡)dt dv+
2𝐸(�⃗�, 𝑡)dt dw + 2𝐻(�⃗�, 𝑡)dv dw -2(

∫︀
𝜕
𝜕𝑦𝐻(�⃗�, 𝑡)𝑑𝑧)dw2 + dt dx + dv dy + dw dz and to use it for

construct an examples of solutions of the 𝑁𝑆-equations. In particular case when the components

of metric are of the form 𝐵(�⃗�, 𝑡) = 𝜕2

𝜕𝑧2𝑄(�⃗�, 𝑡),𝐻(�⃗�, 𝑡) = 𝜕2

𝜕𝑥𝜕𝑧𝑄(�⃗�, 𝑡)𝐸(�⃗�, 𝑡) = 𝜕2

𝜕𝑦𝜕𝑧𝑄(�⃗�, 𝑡) solu-

tions of the 𝑁𝑆-equations are expressed throw the function 𝑄(�⃗�, 𝑡) = 𝜕𝑃
𝜕𝑦 , that is solution of the

Monge-Ampere equation (MA):

2𝑄2
𝑥𝑦𝑧𝑧 − 2𝑄𝑦𝑦𝑥𝑧𝑄𝑥𝑧𝑧𝑧 − 2𝑄𝑥𝑥𝑦𝑧𝑄𝑦𝑧𝑧𝑧 +𝑄𝑥𝑥𝑧𝑧𝑄𝑧𝑧𝑦𝑦 +𝑄𝑥𝑥𝑦𝑦𝑄𝑧𝑧𝑧𝑧 = 0. (1)

Theorem 1. The equation (1) determines function pressure 𝑃 (�⃗�, 𝑡) =
∫︀

(𝑄(�⃗�, 𝑡)𝑑𝑡) of flow
and in particular cases admit reduction to the second order ODE of the form 𝑦′′ + 𝑎1(𝑥, 𝑦)𝑦′3 +
3𝑎2(𝑥, 𝑦)𝑦′2 + 3𝑎3(𝑥, 𝑦)𝑦′ +𝑎4(𝑥, 𝑦) = 0, where 𝑎𝑖 = 𝑎𝑖(𝑥, 𝑦). This type of ODE’s meet in theory of

nonlinear dynamical systems ˙⃗𝑥 = 𝐹𝑖(�⃗�) with polynomial right parts which have as the limit cycles
and also strange attractors in their space of states. As an example, we give the equation

𝑑2

𝑑𝑥2
𝑦(𝑥) − 3

(︀
𝑑
𝑑𝑥𝑦(𝑥)

)︀2
𝑦(𝑥)

− 2
(𝑘 − 6𝑥+ 3)

(︀
𝑑
𝑑𝑥𝑦(𝑥)

)︀
𝑦(𝑥)

𝑘 + 3
− 12

(𝑦(𝑥))
3
𝑥2

𝑘 + 2
+

(4 𝑘 + 12) (𝑦(𝑥))
3
𝑥

𝑘 + 2
+

+
(−𝑘 − 2) (𝑦(𝑥))

3

𝑘 + 2
− 6

(𝑦(𝑥))
4
𝑥4

(𝑘 + 3) (𝑘 + 2)
− 2

(−6 − 2 𝑘) (𝑦(𝑥))
4
𝑥3

(𝑘 + 3) (𝑘 + 2)
− 2

(︀
𝑘2 + 3 𝑘 + 3

)︀
(𝑦(𝑥))

4
𝑥2

(𝑘 + 3) (𝑘 + 2)
= 0,

which has a form similar to the equation 𝑦′′− 3 𝑦′2

𝑦 +
(︀
𝛼 𝑦 − 𝑥−1

)︀
𝑦′ + 𝜖 𝑥𝑦4 + 𝛿

𝑥𝑦
2−𝛾 𝑦3−𝛽 𝑥3𝑦4−

𝛽 𝑥2𝑦3 = 0, which is equivalent to the Lorenz-system �̇� = 𝑟𝑥 − 𝑦 − 𝑥𝑧, �̇� = 𝑥𝑦 − 𝑏𝑧, �̇� =
𝜎(𝑦 − 𝑥), where: 𝛼𝜎 = 1, 𝛽𝜎2 = 1, 𝛾𝜎2 = 𝑏(𝜎 + 1), 𝛿𝜎 = (𝜎 + 1), 𝜖𝜎2 = 𝑏(𝑟 − 1).

A more general approach to study properties of the 𝑁𝑆-equations is connected by using the
14-dimension space with local coordinates 𝑥, 𝑦, 𝑧, 𝑡, 𝑢, 𝑣, 𝑤, 𝑝, 𝜉, 𝜂, 𝜒, 𝜌, 𝑞, 𝛿.

Theorem 2. The metric: 𝑑𝑠2 = 2 𝑑𝑥𝑑𝑢+2 𝑑𝑦𝑑𝑣+2 𝑑𝑧𝑑𝑤+(−𝑊 (�⃗�, 𝑡)𝑤−𝑉 (�⃗�, 𝑡)𝑣−𝑈(�⃗�, 𝑡)𝑢) 𝑑𝑡2+(︁
−𝑈(�⃗�, 𝑡)𝑝− 𝑢 (𝑈(�⃗�, 𝑡))

2 − 𝑢𝑃 (�⃗�, 𝑡) + 𝑤𝜇 𝜕
𝜕𝑧𝑈(�⃗�, 𝑡)−𝑤𝑈(�⃗�, 𝑡)𝑊 (�⃗�, 𝑡)

)︁
𝑑𝜂2+

+
(︁
𝑣𝜇 𝜕

𝜕𝑦𝑈(�⃗�, 𝑡) − 𝑣𝑈(�⃗�, 𝑡)𝑉 (�⃗�, 𝑡) + 𝑢𝜇 𝜕
𝜕𝑥𝑈(�⃗�, 𝑡)

)︁
𝑑𝜂2 + 2 𝜂𝑑𝜉 + 2 𝑑𝜌𝑑𝜒+ 2 𝑑𝑚𝑑𝑛+

+
(︁
−𝑉 (�⃗�, 𝑡)𝑝− 𝑣𝑃 (�⃗�, 𝑡) − 𝑣 (�⃗�, 𝑡))

2 − 𝑉 (�⃗�, 𝑡)𝑊 (�⃗�, 𝑡)𝑤 + 𝑣𝜇 𝜕
𝜕𝑦𝑉 (�⃗�, 𝑡) − 𝑢𝑈(�⃗�, 𝑡)𝑉 (�⃗�, 𝑡)

)︁
𝑑𝜌2+

+
(︀
𝑢𝜇 𝜕

𝜕𝑥𝑉 (�⃗�, 𝑡)
)︀
𝑑𝜌2 +

(︁
−𝑢𝑈(�⃗�, 𝑡)𝑊 (�⃗�, 𝑡)−𝑤 (𝑊 (�⃗�, 𝑡))

2−𝑤𝑃 (�⃗�, 𝑡)+𝑤𝜇 𝜕
𝜕𝑧𝑊 (�⃗�, 𝑡)

)︁
𝑑𝑚2+

+
(︁
𝑣𝜇 𝜕

𝜕𝑦𝑊 (�⃗�, 𝑡) − 𝑣𝑉 (�⃗�, 𝑡)𝑊 (�⃗�, 𝑡) + 𝑢𝜇 𝜕
𝜕𝑥𝑊 (�⃗�, 𝑡) −𝑊 (�⃗�, 𝑡)𝑝

)︁
𝑑𝑚2, is the Ricci-flat on solutions

of the NS-equations.
This metric belongs to the class of partially-projective spaces and their Cartan-invariants,

𝐾 = 𝑅(𝑖 𝑎 𝑗 𝑏)𝑅(𝑗 𝑐 𝑖 𝑑)𝐴𝑎𝐴𝑏𝐴𝑐𝐴𝑑, constructed on the basis of the Riemann curvature of the
space are used then in theory of the 𝑁𝑆-equations.
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On Dynamics of a Free Boundary in 2D Hydrodynamics

S. A. Dyachenko1, V. E. Zakharov2,3,4, A. I. Dyachenko2
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A potential flow of an ideal incompressible fluid with a free surface and infinite depth is con-
sidered in the 2D geometry. The fluid dynamics can be fully characterized by the motion of the
complex singularities in the analytical continuation of both the conformal mapping and the complex
velocity. One of the possible singularities is the square root cut. We derived the exact equations
describing the evolution of this cut along with complex velocity given on its sides. The equations
show that in general case surface remains smooth at all times. Analytical results are supported by
numerical simulations.
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Singular Solutions of the BBM Equation : Analytical and Numerical
Study

S. Gavrilyuk1, K.-M. Shyue 2
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We show that the Benjamin-Bona-Mahony (BBM) equation admits stable travelling wave solu-
tions representing a sharp transition front linking a constant state with a periodic wave train. The
constant state is determined by the parameters of the periodic wave train : the wave length, ampli-
tude and phase velocity, and satisfies both the Rankine-Hugoniot conditions for the corresponding
Whitham modulation system and generalized Rankine-Hugoniot conditions for the exact BBM
equation. Such stable shock-like travelling structures exist if the phase velocity of the periodic
wave train is not less than the solution average value. To validate the accuracy of the numerical
method, we derive the (singular) solitary limit of the Whitham system for the BBM equation and
compare the corresponding numerical and analytical solutions. We find good agreement between
analytical results and numerical solutions.
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Local Equilibrium Approximation in Free Turbulent Flows:
Verification Through the Method of Differential Constraints
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We present a version of the results obtained in Grebenev et al [ZAMM Zeitschrift fur Ange-
wandte Mathematik und Mechanik. - 2021. - Art.e202000095] wherein the closure formula, that is,
the local equilibrium approximation of second-order moments for modeling free turbulent flows was
justified by the method of differential constrains. The proposed analysis provides us a point of view
from the modern theory of symmetry analysis on the closure problem in turbulence. Specifically,
closure relationships in the physical space are interpreted as the (differential) equations of invariant
sets (manifolds) in a phase-space. We demonstrate how this concept can be applied for verification
of the local equilibrium approximations (LEA) of second-order moments. With this, we obtain the
equivalence of LEA and vanishing the Poisson bracket for the defect of the longitudinal velocity
component and of the turbulent energy. Numerical experiments carried out in a far turbulent wake
confirm this conclusion.
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Qualitative Properties and Invariant Solutions of the Nonstationary
One-dimensional Equations of a Vibrationally Excited Gas
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Mathematical properties of the system of nonstationary one-dimensional equations describing
flows of an inviscid vibrationally excited gas are investigated. Conservation laws in divergent dif-
ferential and integral forms were found for the cases of cylindrical and spherical symmetries. Under
condition that the relaxation time 𝜏 is constant, the complete admitted Lie algebras (groups) were
calculated for the system. Optimal systems of the one-dimensional subalgebras are constructed,
corresponding representations of invariant solutions and reduced equations for them are obtained
and some particular solutions were found in an explicit form. It is shown that, in contrast to a
similar system for an ideal gas, admitted Lie algebras do not contain a generator for simultane-
ous scaling the independent variables, which is associated with known self-similar solutions of the
problems of strong shock waves. In order to obtain the generalizations of these solutions that are
interesting from a physical point of view for the case of an vibrationally excited gas, a modification
of the Landau - Teller equation for the vibrational temperature of the gas is proposed. This made
it possible to include the necessary generator in the Lie algebra admitted by the modified equa-
tions, and derive a system in self-similar variables. As an example, the problem of a strong point
explosion is solved on its basis, for which the known effect of lagging the growth of the vibrational
temperature from the static (translational) one behind the shock wave front is obtained.



Habibullin I. T. 27

Generalized Invariant Manifolds and Their Applications
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The method of differential constraints is a widely known method for constructing explicit so-
lutions for differential equations [1]. In the talk we will discuss a generalization of the method
when the constraint is assigned not to the given equation but to its formal linearization (Fr𝑒chet
derivative). Such kind generalization of the invariant manifold (differential constraint) finds impor-
tant application in the soliton theory, since it provides an effective tool for constructing Lax pairs
and recursion operators, it allows also to derive Dubrovin type equations which are fundamental
objects in the finite-gap integration method (see [2], [3]).
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Comparative Analysis of Continuous Kadomtsev-Perviashvili-Type
Equations Using Symmetries
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The continuous Kadomtsev-Petviashvili-type (KP) equations are focussed in the form of AKP,
BKP, and CKP equations with respect to its symmetries from point and nonlocal perspective. The
subsequent reductions for each form and the comparative analysis is presented broadly. For the
the first form, AKP, the symmetries are generally infinite-dimensional in nature whereas for the
other forms the symmetries are slightly different in nature. A subsequent analysis of the reduced
equations are done using singularity analysis to study the integrability of the equations with the
presence of series solutions. Certain solutions are also presented using the approach of conservation
laws.
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Solutions of the Boiti-Leon-Manna-Pempinelli Equation Using
Symmetries
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Point symmetries of the Boiti-Leon-Manna-Pempinelli equation [1] in (1 + 3)− dimension are
computed and the corresponding reductions are studied thoroughly. Under a special case the
travelling-wave reduction is considered and the subsequent integrability using the method of Sin-
gularity analysis is presented. The equation is also studied to compute its nonlocal symmetries
using the standard approach and certain recently developed algorithms [2] and a comparison with
its local counterpart is mentioned. Singularity analysis of the parent PDE is also mentioned elab-
orately to emphasize the integrabitility of the equation in a general sense.

AKH is grateful to NBHM Post-Doctoral Fellowship, Department of Atomic Energy (DAE),
Government of India, Award No: 0204/3/2021/R&D-II/7242 for financial support. PGLL ac-
knowledges the support of the National Research Foundation of South Africa, the University of
KwaZulu-Natal and the Durban University of Technology.
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The focal part of this work is to study the possible reductions, solutions in closed-forms of the
modified nonlinear Schrödinger equation. Inspired by the work of Dysthe[1, 2, 3] the analysis of
the modified version is conducted using point and nonlocal symmetries. The equation reduces to a
coupled ordinary differential equation using the translation symmetries and subsequently further
to lower-order ODE which assists in further exploration. The Singularity analysis method is also
employed separately on those reduced highly nonlinear equations which are lacking any possible
point symmetries. A gradual connection with the nonlocal symmetries is presented to further the
study of new reductions and solutions.
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In this talk we consider the generalized Kuramoto–Sivashinsky equation, a PDE for 𝑢 =
𝑢(𝑥1, . . . , 𝑥𝑛, 𝑡) of the form

𝑢𝑡 = 𝑎∆2𝑢+ 𝑏(𝑢)∆𝑢+ 𝑓(𝑢)|∇𝑢|2 + 𝑔(𝑢), (1)

where 𝑎 is a nonzero constant, 𝑏, 𝑓, 𝑔 are arbitrary smooth functions of the dependent variable 𝑢,
∆ =

∑︀𝑛
𝑖=1 𝜕

2/𝜕𝑥2𝑖 is the Laplace operator, |∇𝑢|2 =
∑︀𝑛

𝑖=1(𝜕𝑢/𝜕𝑥𝑖)
2, and 𝑛 is an arbitrary natural

number.
Using an approach close to that from [1] we give a complete classification of all cases when (1)

admits nontrivial local conservation laws of any order and give an explicit form of these conserva-
tion laws modulo trivial ones.

Equation (1) is a natural generalization of the well-known Kuramoto–Sivashinsky equation
arising in a variety of physical and chemical contexts, describing inter alia flame propagation,
reaction-diffusion systems and unstable drift waves in plasmas, see e.g. [2] and references therein.
The equation in question is recovered from (1) for 𝑎 = −1, 𝑏 = −1, 𝑓 = −1/2 and 𝑔 = 0.

The author gratefully acknowledges financial support from Specific Research Grant SGS/13/2020
of the Silesian University in Opava.
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This research is devoted to the further modern development of the N. N. Yanenko’s ideas
on the deep learning and increasing efficiency of the various technological stages of large scale
supercomputing experiments: geometrical and functional modeling, grid generation, space-time
approximations, algebraic solutions, optimization approaches for inverse problems, post-processing
and visualization of the numerical results, and decision making on the base of the analysis of
obtained data. The considered integrated computational environment (ICE) presents an intelligent
software tools for obtaining fundamental knowledge and investigation of the actual real processes
and phenomena from the nature and industrial applications. The mathematical efficiency, high
performance and robustness of the advanced approaches are provided by the different intelligent
instruments for big data transforms as well as for automatical construction of algorithms and their
mapping on the multiprocessor machine architectures with distributed and hierarchical shared
memory. The ideal configuration of ICE is presented in the framework of the expert system or
the base of active mathematical and/or information knowledge. The technical requirements for
ICE include the extension of the set of models and algorithms, adaptation to the evolution of
the computer platforms, wide reusing the external software, coordination of the various groups of
developers. This features should support long life cycle of the product and its poste restante by
the end users with wide class of professional backgrounds. Such intelligent computer technologies
should play the role of the blood and/or lymph net systems for all sciences and industrial branches
to provide the further progress and stable development of the civilization.
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A 3D model of heat transfer in heterogeneous materials is developed. We used it for the
numerical simulation of laser welding of metallic plates. We considered the welding of steel and
titanium plates with an intermediate insert made of steel, copper, niobium, and titanium layers
welded by explosion. They are used to prevent the formation of brittle intermetallic compounds
in the weld that worsens the strength properties of the joint.

Welding is performed in two stages: first, the laser beam welds the joint of the steel plate with
the steel outer layer of the insert, then the titanium plate is welded with the titanium outer layer
of the insert.

The thickness of the layers in the insert is selected such that the refractory niobium layer does
not melt. It prevents mixing of steel with titanium in the weld pool causing the formation of their
intermetallic compounds. This improves the strength of the welded joint.

The model accounts for the key phenomena occurring during the complex physical process
of laser welding: heat transfer in heterogeneous material, melting, evaporation, and solidification
of materials. We used it to investigate the temperature fields in the plates and to predict the
geometric parameters and the crystal structure of the weld. Finally, we defined the specifications
for welding conditions (welding speed, laser power) and for the thicknesses of the layers in the
insert allowing us to get a high quality weld joint.

We validated our simulations against corresponding experimental data and found them to be
in a good agreement.

The research was carried out within the state assignment of Ministry of Science and Higher Edu-
cation of the Russian Federation (project Nos. 121030500137-5 and AAAA-A19-119051590004 - 5).
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Methods for constructing finite-difference mathematical models based on symmetry are dis-
cussed. Group analysis methods make it possible to construct invariant difference schemes that
preserve the basic geometric and qualitative physical properties of the original continuous mod-
els. Examples of invariant schemes for partial differential equations are given: wave equations,
one-dimensional shallow water equations, and Green-Naghdi equations. The constructed schemes
possess finite-difference analogs of the local conservation laws possessed by the original differential
models.

The authors gratefully acknowledge financial support by Russian Science Foundation Grant
18-11-00238 “Hydrodynamics-type equations: symmetries, conservation laws, invariant difference
schemes”. E. I. K. acknowledges Suranaree University of Technology (SUT) and Thailand Science
Research and Innovation (TSRI) for their support.
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In this report we find general solutions to some classes of linear wave equations with variable
coefficients. Such equations describe the oscillations of rods, acoustic waves, and also some models
of gas dynamics are reduced to these equations. To construct general solutions, we employ special
types of Euler-Darboux transformations, namely, Levi type transformations. These transforma-
tions are first order differential substitutions. For constructing each transformation, we need to
solve two linear second order ordinary differential equations. The solutions of one of these equations
are determined by the solutions of the other equations by means of a differential substitution and
Liouville formula. In the general case, it is not easy to solve these ordinary differential equations.
However, it is possible to provide some formula for the superposition of the transformation of Levy
type.

Starting with a classical wave equation with constant coefficients and employing the found
transformations, we can construct infinite series of equations possessing explicit general solutions.
By means of Matveev method we obtain limiting forms of iterated transformations. We provide a
series of particular examples of the equations possessing general solutions.
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It is known that the Kirchhoff method allows one to find exact solutions for steady plane
potential flows of an ideal fluid with a free boundary in the absence of the gravity force and surface
tension. There are many jet flows of this type known today. However, if the problem is more
complicated, for example, if the flow is ponderous, i.e., the gravity force is taken into account, or
if the problem is unsteady, i.e., the time is taken into account, then there is no universal method
for constructing exact solution in both cases.

In the present work, we propose the technique to obtain exact solutions basing on analytical
continuation of the unknown function beyond the area of its definition. At first, by using conformal
mapping the problem is formulated in the form of boundary-value problem in the fixed domain.
As domains, we used a wedge with an apex angle 𝛼 or the strip of unit width. After multiple turns
around the wedge apex or after analytical continuation across the strip, various branches of the
unknown function are related by an infinite system of differential equations.

It has been demonstrated that the system of equations becomes finite: if 𝛼/𝜋 is a rational
number or if the function is periodic across the strip with a rational period.

By using the proposed technique, some of exact solutions have been obtained for stationary
flows of heavy liquid, which turned out to be very close to high-amplitude gravity waves on the
fluid surface. A new class of unsteady flows with a free boundary has been found.

The authors were supported by the Russian Foundation for Basic Research (project no. 19-01-
00096).
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We consider the second-order nonlinear parabolic equation

𝑢𝑡 = [Φ(𝑢)]𝑥𝑥 + [Ψ(𝑢)]𝑥 + Ξ(𝑢). (1)

Here 𝑡, 𝑥 are independent variables: 𝑡 is time, 𝑥 is a spatial variable; 𝑢(𝑡, 𝑥) is an unknown function,
Φ,Ψ,Ξ are specified sufficiently smooth functions.

Equation (1) has a general form and isn’t a mathematical model of any given process. However,
its specific varieties describe many processes in continuum mechanics. The most commonly consi-
dered is the porous medium equation [1], which we get if Φ = 𝐴𝑢𝛼, and Ψ = Ξ ≡ 0. It describes
the filtration of an ideal gas in porous media and the radiant (nonlinear) thermal conductivity, so
in Russian literature, it is called the nonlinear heat equation [2]. The second most known case
is when Φ = 𝐴𝑢𝛼, Ψ ≡ 0, and Ξ = 𝐵𝑢𝛽 . Then Eq. (1) is called the generalized porous medium
equation [1] or the nonlinear heat equation with a source [2]. The model allows one to take into
account the inflow or sink of matter (energy). The case Φ = 𝐴𝑢𝛼, Ψ = 𝐶𝑢𝛾 , Ξ ≡ 0 is less common,
but it also arises in applications and describes the diffusion and convective transfer of energy and
matter. It is called the convection-diffusion equation [3].

If function Φ′(𝑢) is smooth and monotonic, the change of variable 𝑣 = Φ′(𝑢) brings Eq. (1) to
the form

𝑣𝑡 = 𝑣𝑣𝑥𝑥 + 𝑓(𝑣)𝑢2𝑥 + 𝑔(𝑣)𝑣𝑥 + ℎ(𝑣). (2)

Let 𝑓(0) ̸= 0, ℎ(0) = 0. For Eq. (2) we consider the boundary condition

𝑣|𝑥=𝑎(𝑡) = 0, (3)

where 𝑎(𝑡) is a sufficiently smooth function, and 𝑎′(0) ̸= 0. Problem (2), (3) it is typical for the
scientific school of A. F. Sidorov [4]. Obviously, the trivial solution 𝑣 ≡ 0 satisfies the problem.
However, under certain natural additional conditions, problem (2), (3) also has a nontrivial solu-
tion, which changes sign when crossing the line 𝑥 = 𝑎(𝑡) [5]. The positive part of this solution and
the trivial solution form a diffusion (heat) wave, which propagates over zero background with a
finite velocity.

The report will present exact solutions to Eq. (2), which have the diffusion wave type. Their
construction is reduced to the integration of Cauchy problems for ordinary differential equations.
Cauchy problems have a singularity multiplying the higher derivative, which is inherited from
the original formulation. So, the classical existence and uniqueness theorems are not applicable
in this case. We will discuss the existence and uniqueness of solutions, the procedure for their
construction, and their properties. Some results were published in [3, 5], but the rests are new.

The reported study was funded by the Ministry of Science and Technology (MOST), grant
109-2923-E-216-001-MY3 and RFBR, research project 20-51-S52003.
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A class of semi-linear optimization problems linked to variational inequalities is studied with
respect to its shape differentiability. One typical example stemming from quasi-brittle fracture
describes an elastic body with a Barenblatt cohesive crack under the inequality condition of non-
penetration at the crack faces. Here we focus on the semi-linear model for a generalized Stokes–
Brinkman–Forchheimer’s equation under divergence-free and mixed boundary conditions describing
the single-phase fluid flow in a porous medium. Based on the Lagrange multiplier approach, using
suitable regularization and associated to adjoint operators due to Marchuk–Agoshkov–Shutyaev,
an analytical formula for the shape derivative is derived from the Delfour–Zolesio theorem. The
explicit expression contains both primal and adjoint states and is useful for finding descent direction
of a gradient algorithm of numerical optimization to identify an optimal shape, e.g., from boundary
measurement data as adopted in inverse problems.

The authors thank the European Research Council (ERC) under the European Union’s Horizon
2020 Research and Innovation Programme (advanced grant No. 668998 OCLOC) and the Russian
Foundation for Basic Research (RFBR) research project 18-29-10007 for partial support.
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Rational solutions of equations for the Burgers hierarchy are considered. Using self-similar
variables this hierarchy is reduced to the family of nonlinear ordinary differenti al equations. Then
the family is transformed to the hierarchy of non-autonomous linear differential equations by
means of the Cole-Hopf formula. This hierarchy is a generalization of the second-order equation
for Hermite polynomials. It is shown that every member of the hierarchy for ordinary differential
equation has the solution in the form of polynomials. Properties of solutions of generalized Hermite
equations in the form the special polynomials are studied. A recursion relation that can be used
for finding corresponding poly nomials for every member is given. It is proved that the well-known
property for Hermite polynomials connecting two polynomials can be used for all polynomials of
the generali zed Hermite hierarchy. It is shown that the Cole-Hopf transformation is a direct
consequence of the differential connection between two special polynomials in the hierarchy of
Hermite equations. A derivation of the generalized Tkachenko equations is given for polynomials
of the generalized Hermite hierarchy whose roots correspond to point vortices in the background
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We consider minimal coordinate splines [1]. These splines as a special case include well-known
polynomial B-splines and share most of their properties (linear independence, smoothness, non-
negativity, etc. Several types of approximation functionals to the system of minimal splines are
constructed: a three-point quasi-interpolation method, an approximation of Sablonniere’s and
Grebennikov’s types, and a system of de Boor-Fix Type functionals biorthogonal to minimal
splines [2]. It is shown that in the case of polynomial generating vector functions for minimal
splines obtained functionals coincide with well-known quasi-interpolants for B-splines [3, 4, 5]. We
provide the results of numerical experiments of circular arc approximation that show how the er-
ror of approximation depends on the choice of approximation functionals and generating vector
functions.

The reported study was funded by RFBR, project number 20-31-90095.
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The problem under consideration concerns with internal waves in non-viscous environment
generated by steady flows of incompressible fluid stratified by density. It is known that Euler
equations for continuously stratified fluid can be reduced to a single quasi-linear elliptic Dubreil-
Jacotin — Long equation for stream function. We use p-version of Collocations and Least Squares
(CLS) method [1] to find numerical solution. This method produces satisfying qualitative and
quantitative results by solving integral- and differential equations, in particular Navier – Stokes
equations [1]. The CLS-method also has an advantage while we can find stream function explicitly
as linear combination of basis functions, which means that we can find velocity components in
every point of computational domain.

We consider in detail two model problems on 2D stationary flow in a bounded domain. The
first one involves steady flow of inviscid homogeneous fluid confined between rigid bottom and
top boundaries with semi-cylindric obstacle on the bottom. The second one deals with steady
flow of non-homogeneous fluid between rigid bottom and top boundaries with Dirichlet boundary
conditions on left and right sides of rectangular area.
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We consider an analytical model of internal waves propagating in a weakly stratified two-
layer fluid. A new model equation involves the long-wave approximation suggested in [1,2] for
the non-linear Dubreil-Jacotin - Long equation. The long-wave model describing travelling waves
is constructed by means of scaling procedure with a small Boussinesq parameter. This model
takes into account a slight density gradient in stratified layers which can be comparable with the
density jump at the interface between layers. Parametric range of solitary wave is defined in the
framework of considered mathematical model. It is demonstrated that non-linear wave regimes,
including regimes of broad plateau-shaped solitary waves and internal fronts, can realize to be
close to parametric domain of the Kelvin – Helmholtz instability. Such a marginal stability of
finite-amplitude internal waves could explain the formation mechanism of a very long billow trains
in abyssal flows.

This work was supported by the grant of the Russian Science Foundation (Project No 21-71-
20039).
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Simple wave solutions are of great interest for nonlinear wave problems. Such a class of solutions
are admitted by first order quasilinear hyperbolic systems in the homogeneous case and they are
useful for solving different problems of interest in the applications as, for instance, Riemann prob-
lems. Unfortunately simple waves are not usually admitted by hyperbolic systems when dissipative
effects are taken into account (non-homogeneous case). Within such a theroretical framework, in
this talk, we would like to show how the well known Method of Differential Constraints can be
used for studying different problems of great interest in nonlinear wave propagation [1]-[4].
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Equivalence transformations play one of the important roles in continuum mechanics. These
transformations reduce the original equations to simpler forms. One of the classes of nonlocal
equivalence transformations is the class of reciprocal transformations. Despite the long history
of applications of such transformations in continuum mechanics, there is no method of obtaining
them. Recently such a method was proposed. The method uses group analysis approach and it
consists of similar steps as for finding equivalence group of transformations. The new method
provides a systematic tool for finding classes of reciprocal transformations (reciprocal equivalence
group of transformations). Similar to the classical group analysis this approach can be also applied
for finding all discrete reciprocal transformations (not only composing a group). As an illustration
the method is applied to the two-dimensional stationary gas dynamics equations. Equivalence
group, reciprocal equivalence group and all discrete reciprocal transformations are found.

We are very thankful to Professor Colin Rogers for attracting our attention to reciprocal trans-
formations.
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Consider the Liouville equation written in the form 𝑢𝑥𝑦 = 𝑓(𝑢) and two differential operators

𝐷 =
∑︀+∞

𝑘=0 𝑢𝑘+1
𝜕

𝜕𝑢𝑘
, 𝑒𝑢𝑋 =

∑︀+∞
𝑘=1𝐷

𝑘−1(𝑒𝑢) 𝜕
𝜕𝑢𝑘

= 𝑒𝑢
∑︀∞

𝑘=1𝐵𝑘−1
𝜕

𝜕𝑢𝑘

where 𝐵𝑘 = 𝐵𝑘(𝑢1, 𝑢2, . . . , 𝑢𝑘) denote the 𝑘-th Bell polynomial defined recursively by

(𝐷 + 𝑢1)𝐵𝑘 = 𝐵𝑘+1, 𝑘 ≥ 0.

A polynomial 𝑃 (𝑢1, 𝑢2, . . . ) is called an integral of the Liouville equation if it anihilates the operator
𝑋. For instance 𝑞2 = 𝑢2 − 1

2𝑢
2
1 anihilates 𝑋.

Theorem[Shabat, Zhiber, 1979, [1]]. The subalgebra 𝐾𝑒𝑟 𝑋 ⊂ K[𝑢1, 𝑢2, . . . ] is isomorphic to the
polynomial subalgebra K[𝑞2, 𝑞3, . . . , 𝑞𝑘, . . . ], where 𝑞𝑘 = 𝐷𝑘−2(𝑞2), 𝑘 ≥ 2.

One can remark that 𝐾𝑒𝑟 𝑋 is the eigen-subspace of the operator 𝑋𝐷 with 𝜆 = 0.
The defining equation of higher symmetries of the Liouville equation can be rewritten as

(𝐷 + 𝑢1)𝑋𝐹 = 𝑋𝐷𝐹 = 𝐹.

It means, that a symmetry 𝐹 = 𝐹 (𝑢1, 𝑢2, . . . ) is an eigen-vector of the operator 𝑋𝐷 with the
eigen-value 𝜆 = 1.

Theorem[Zhiber, Shabat, 1979, [1]]. An arbitrary symmetry 𝐹 (an eigen-vector of 𝑋𝐷 with
𝜆 = 1) can be written in the form

𝐹 = (𝐷 + 𝑢1)𝑄, 𝑄 ∈ 𝐾𝑒𝑟 𝑋 = K[𝑞2, 𝑞3, . . . ].

Question: what about other eigen-spaces of the operator 𝑋𝐷?

Theorem[2021, [2]] 1) The operator (𝐷+𝑢1)𝑋 = 𝑋𝐷 restricted to the subspace 𝐴𝑛 of polynomials
of weight 𝑛 ≥ 2 is diagonalizable;

2) Its eigen-values are the following subset of non-negative triangular integers

𝜆0 = 0, 𝜆1 = 1, . . . , 𝜆𝑛−2 =
(𝑛− 2)(𝑛− 1)

2
, 𝜆𝑛 =

𝑛(𝑛+ 1)

2

(where 𝜆𝑛−1 = (𝑛−1)𝑛
2 is skipped);

3) An arbitrary eigen-vector 𝑃 related to the eigen-value 𝜆𝑘 with 𝑘 ∈ {0, 1, . . . , 𝑛− 2, 𝑛} can be
written in the form

𝑃 = (𝐷 + 𝑢1)(𝐷 + 2𝑢1) . . . (𝐷 + 𝑘𝑢1)𝐹,

where 𝐹 stands for some homogeneous polynomial of weight (𝑛− 𝑘) from 𝐾𝑒𝑟 𝑋 = K[𝑞2, 𝑞3, . . . ].
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In general a system of differential equations is integrable if there exist ‘enough’ in number
first integrals (FIs) so that its solution can be found by means of quadratures. Therefore the
determination of the FIs is an important issue in order to establish the integrability of a dynamical
system. In this work we consider holonomic autonomous dynamical systems defined by equations

𝑞𝑎 = 𝐹 𝑎(𝑞) (1)

where the generalized force 𝐹 𝑎(𝑞) has the form

𝐹 𝑎(𝑞) = −𝐴𝑎
𝑏𝑐(𝑞)𝑞

𝑏𝑞𝑐 −𝑄𝑎(𝑞).

We prove a Theorem which produces the FIs of any order of (1) in terms of the ‘symmetries’ of
the geometry defined by the quantities 𝐴𝑎

𝑏𝑐, when they are considered to be connection coefficients
of a non-metrical symmetric connection. We apply the Theorem to compute cubic FIs of various
dynamical systems.
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In this talk we collect and review some results on the integrability of sequences of autonomous
ordinary differential equations. They are constructed by applying successively the differential
operator D𝑔 = 𝐷𝑥 + 𝑔(𝑢) to the function 𝑢 = 𝑢(𝑥), where 𝑔 = 𝑔(𝑢) is a given smooth function and
𝐷𝑥 denotes the total derivative operator with respect to the independent variable 𝑥. The sequence
(or chain) generated by 𝑔 is denoted by E𝑔 := {D𝑛

𝑔𝑢 = 0}𝑛∈N.
It was demonstrated in [1] that any of the equations in E𝑔 admits the pair

(v, 𝜆) =
(︁
𝜕𝑢,

𝑢1
𝑢

− 𝑢𝑔′(𝑢)
)︁

(1)

as 𝒞∞−symmetry [2]. The main consequence is that the general solution of the 𝑛th-order equation
in E𝑔 is recursively constructed from the general solution of the first element D𝑔𝑢 = 0, which is a
first-order autonomous ODE. More specifically, if 𝜙[𝑗](𝑥) is the general solution of the 𝑗th element of
the chain, then 𝜙[𝑗+1](𝑥) satisfies the first-order auxiliary equation 𝑢1+𝑔(𝑢)𝑢 = 𝑢𝜙[𝑗](𝑥). There are
many functions 𝑔 for which this auxiliary equation can be easily integrated, as the Bernoulli-type
equations that correspond to 𝑔(𝑢) = 𝑘𝑢𝑚. The well-known Riccati and Abel chains, corresponding
to 𝑚 = 1 and 𝑚 = 2, respectively, are of this form [3, 4, 5].

In [6] the single 𝒞∞−symmetry (1) was used to generate 𝑛 generalized symmetries of the form
w(𝑛,𝑖) = 𝜌(𝑛,𝑖)(𝑢

(𝑛−1))𝜕𝑢, for 1 ≤ 𝑖 ≤ 𝑛, of the 𝑛th element in the chain generated by 𝑔(𝑢) = 𝑘𝑢𝑚.
As the main consequence, the functions 𝐼(𝑛,𝑖) = 𝜌(𝑛,𝑖)/𝜌(𝑛,1) for 2 ≤ 𝑖 ≤ 𝑛, are functionally first
integrals of the 𝑛th-order equation that can be directly expressed in terms of the previous elements
of the sequence.

For the Riccati chain we manage to get an additional generalized symmetry, which yields a
complete set of first integrals, without any kind of integration. For the general case, the complete
integration is achieved by using a Jacobi last multiplier [7] previously found in [1]. As a result, it
is proved that the general solution of the 𝑛th element in the chain is of the form

𝑢(𝑡)𝑚 =
(𝑇𝑛−1(𝑡))

𝑚

𝑘𝑚

∫︁
(𝑇𝑛−1(𝑡))

𝑚
𝑑𝑡+ 𝐶1

,

where 𝑇𝑛−1(𝑡) is an arbitrary (normalized) polynomial of degree 𝑛−1. Several examples illustrates
the main results.

C. Muriel gratefully acknowledges financial support by Junta de Andalućıa research group
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Investigación/PGC2018-101514-B-I00 project.
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In this paper, we present the point symmetry group of the three-dimensional homogeneous
Helmholtz equation, when we consider the cylindrical coordinate system. In continuation, we
present a complete set of functionally independent invariants of the equation along with the form
of the general solution provided by these invariants. Finally, we find an optimal system of one-
dimensional Lie subgroups of the full symmetry group.
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The research is focused on the analysis of the relativistic gas dynamics equations. The stud-
ied equations are considered in Lagrangian description, making it possible to find a Lagrangian
such that the relativistic gas dynamics equations can be rewritten in a variational form. Such
a Lagrangian is found in the paper. Complete group analysis of the Euler-Lagrange equation is
performed. The found Lagrangian and the symmetries are used to derive conservation laws in
Lagrangian variables by means of Noether’s theorem. The analogs of the newly found conservation
laws in Eulerian coordinates are presented as well.
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Fisher Equation has been focus of many studies due to its applications in reaction diffusion
process, biological and genetic modals and population dynamics. A generalized form of Fisher
equation in cylindrical coordinates is studied here from Lie symmetry stand point. The optimal
systems of symmetry generators are obtained and conservation laws using the multiplier approach
are derived. In the end reductions using the similarity variables arising from Lie symmetries are
presented.
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Using the symmetry-based turbulence theory, we derive turbulent scaling laws in wall-bounded
shear flows for arbitrarily high moments of the flow velocity 𝑈1. The key ingredients are the
symmetries of classical mechanics, especially the scaling of space and time, and two statistical
symmetries, which are not directly observed in Euler and Navier-Stokes equations. These sym-
metries are admitted by all complete theories of turbulence, i.e. the infinite hierarchy of moment
and PDF equations and also by the famous Hopf functional equation. These symmetries provide
a measure of intermittency and non-Gaussian behavior properties that have been investigated for
decades for turbulence and are now subject to a rigorous description. Based on the above, in the
near-wall region the symmetry theory predicts a log-law for the mean velocity (𝑛 = 1) and an
algebraic law with the exponent 𝜔(𝑛 − 1) for moments 𝑛 > 1. Hence, the exponent 𝜔 of the 2𝑛𝑑

moment determines the exponent of all higher moments. Most important, moments here always
refer to the instantaneous velocities 𝑈 and not to the fluctuations 𝑢′. For the core regions of both
plane and round Poiseuille flows we find a deficit law for arbitrary moments 𝑛 of algebraic type
with a scaling exponent 𝑛(𝜎2 − 𝜎1) + 2𝜎1 − 𝜎2. Hence, the moments of order one and two with its
scaling exponents 𝜎1 and 𝜎2 determine all higher exponents. All new group theoretical results are
validated very well by a new plane Poiseuille flow DNS at 𝑅𝑒𝜏 = 104 and by pipe flow data from the
CICLoPE (Uni Bologna) and Superpipe (Princeton) flow experiments at 𝑅𝑒𝜏 = 2 * 103 − 3.8 * 104.
Thereby we find that 𝜎1 and 𝜎2 are almost identical, so that the exponents of all moments in this
range are essentially constant, which corresponds to anomalous scaling.
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There are two well-known classes of partial differential equations that admit infinite hierarchies
of higher order generalized symmetries:

1) linear and linearizable systems that admit a nontrivial point symmetry group;

2) integrable nonlinear equations such as Korteweg–de Vries, nonlinear Schrödinger, and Burgers’.

In this talk, I will introduce a new general class:

3) underdetermined systems of partial differential equations that admit an infinite-dimensional
symmetry algebra depending on one or more arbitrary functions of the independent variables. An
important subclass of the latter are the underdetermined Euler–Lagrange equations arising from a
variational principle that admits an infinite-dimensional variational symmetry algebra depending
on one or more arbitrary functions of the independent variables, which, according to Noether’s
Second Theorem, admit Noether dependencies. Examples include general relativity, electromag-
netism, and parameter-independent variational principles.
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In this study, the nonlocal transformation, which is called Sundman transformation, and the
Prelle-Singer method are used to solve ordinary differential equations. Firstly, the Ermakov-Pinney
equation is classified by special functions to apply Sundman transformation. After this classifi-
cation, the class of equations is determined. The suitable transformation for this class will be
chosen, and the Sundman transformation pair is obtained using this appropriate transformation.
Moreover, the first integrals of the Ermakov-Pinney equation are found by this transformation pair.
Then, the Prelle-Singer approach is applied to Ermakov-Pinney Equation, and the first integrals,
Lagrangian and Hamiltonian, of this equation, are derived. The exact solutions corresponding to
the physically different cases are obtained by these first integrals and represented graphically.

Keywords: Nonlocal transformation pair, Differential equations, First Integral, Lagrangian,
Hamiltonian, Ermakov-Pinney Equation.
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We consider a family of inhomogeneous spacetimes known as silent universes with two scale
factors. The gravitational field equations are constructed by an effective point-like Lagrangian.
This Lagrangian function is used to write the field equations as a Hamiltonian system and derive the
time-independent Schrodinger equation of quantum cosmology. We investigate the group properties
of the Schrodinger equation and we calculate similarity solutions from Lie point symmetries. In
the content of de BroglieBohm theory we determine the quantum correction in the semi-classical
limit for the field equations. The quantum ponteial corresponds to new terms in the modified field
equations and the new physical properties provided by the quantum potential are discussed.
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Rayleigh-Benard convection is a classical field of science, and in the overwhelming number
of works convection is considered in an incompressible medium on the basis of the Boussinesq
approximation [1]. However, the calculation of gas convection in regions with a height of several
tens of centimeters and more requires taking into account its compressibility on the basis of the
complete equations of gas dynamics. Similar tasks arise when considering the issues of explosion
safety when transporting hydrocarbons through pipelines and storing them in tanks. However,
such convection has been poorly studied due to the high rigidity of the system of equations due to
the coexistence of fast thermoacoustic waves and slow convective motion [2].

In this work, by means of numerical simulation, we study the stability characteristics of the
equilibrium Rayleigh-Benard convection regime in a compressible, viscous, and heat-conducting
gas [2]. It is shown that, depending on the height of the convection region and the magnitude
of the temperature gradient, various convection modes are realized - isobaric, adiabatic, and su-
peradiabatic. Moreover, in the adiabatic regime, convection develops with stable stratification
due to quasi-adiabatic processes. A diagram of convection regimes was constructed depending on
the height of the region and the magnitude of the temperature gradient (Fig. 1). Analytical [3]
and derived numerical data are shown with black solid line and dots. It is shown that for air
under normal conditions the value of the critical height of the region Hcr, above which the isobaric
convection regime is replaced by adiabatic with stable or superadiabatic with unstable in density
stratification, is equal to 17.3 cm. An analytical formula for the critical height Hcr is obtained and
for the selected gaseous medium, the critical height of the region increases with an increase in the
absolute temperature according to the law of the fourth root.

Figure 1: Dimensionless critical temperature difference
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In this talk we consider the so called Egorov hydrodynamic type systems.
We discuss an integrability of these systems for any number of components.
So, the classical Hodograph Method can be appropriately extended from 2x2 to NxN quasilinear

systems of this order.
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The problem of finding traveling waves in one-dimensional nonlinear and dispersive media is
reduced to solving a system of ordinary differential equations; if the system order is high enough, the
internal wave structure can be very complex, including random. If the medium is inhomogeneous,
it is natural to expect the absence of solutions in the form of traveling waves due to the reflection
and re-reflection effects. If, however, the medium parameters change slowly (in comparison with
the wavelength), the reflection is weak, and by using asymptotic methods (WKB, geometric optics
or acoustics) it becomes possible to construct an approximate solution in the form of a traveling
wave with a variable amplitude and phase. For the media with a monotonic change in parameters,
such solutions demonstrate the highest gain and the ability to transmit a signal over long distances
without distortion.

It turns out to be possible to find exactly solutions in the form of traveling waves with variable
amplitude and phase in highly inhomogeneous media under certain assumptions on the medium
parameters. From the point of view of physics, such cases are possible for the so-called consis-
tent media when there is no reflection even from a parameter jump. From the point of view of
mathematics, such cases are possible when the governing equations in the corresponding variables
can be reduced to equations with constant coefficients. It is the mathematical procedure for ob-
taining traveling waves in highly inhomogeneous media that is discussed in the report. We first
demonstrate this procedure using the example of the classical linear wave equation with variable
coefficient when it can be reduced to the Klein-Gordon equation with constant coefficients. This
gives rise to an ordinary second-order differential equation for finding a variable coefficient (the
sound speed), so that traveling waves exist in a wide class of inhomogeneous media. Then we
demonstrate the effectiveness of this procedure in nonlinear hyperbolic problems as well as in the
framework of Boussinesq systems.

Various examples of how this approach is applied to surface and internal waves in the ocean,
sound waves in the Earth and Sun atmospheres, and magneto-hydrodynamics are considered.

The study was supported by grants RFBR 20-05-00162 (EP) and 19-05-00161 (TT).
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One of many fields of scientific activity of academician Yanenko was searching for special
solutions of PDEs, especially for solutions with degenerate hodograph of Euler equations of gas-
dynamics [1-2]. The simplest example is given by so called double waves. For instance, transient
2-dimensional flow of an ideal gas is governed by a hyperbolic system of 3 equations for 3 unknown
functions of (𝑡, 𝑥, 𝑦). The solutions are mappings of 𝑅3 into 𝑅3 in general of rank 3. However,
there are also solutions of rank 1 - simple waves and rank 2 - double waves. As noticed by Giese
[3], double waves can be of hyperbolic or elliptic type. When searching for double waves one can
determine at first the 2-dimensional hodograph surface 𝑆, which is the set of values of the double
wave solution. The double wave hodographs are rather exceptional surfaces. It turns out that
they have to satisfy some second order partial differential equation following from the degeneracy
condition: rank of the solution = 2, which imposes extra constraints on the solution. Therefore
appropriate compatibility condition must be satisfied. It turns out that systems of hydrodynamics
type define two geometrical structures in the space of dependent variables; metric structure (or
rather conformal structure) and a linear connection (independently of the metric). By appropriate
definition, the metric structure can be properly selected so we have also the corresponding metric
connection ∇𝑔. It turns out that the difference between these connections 𝐺 = ∇ − ∇𝑔 which
is a tensor gives the measure of nonlinearity of the system (of potential flows). Moreover a 2-
dimensional surface 𝑆 is a double wave hodograph if and only if it satisfies the following second
order (geometric) PDE [4-5]

𝐻(𝑥) = 𝑁(𝑥) for every 𝑥 ∈ 𝑆

where 𝐻(𝑥) is the mean metric curvature of the surface, and 𝑁(𝑥) =< �̃�, 𝑔* > is expressed by the
pull back of 𝐺 to 𝑆 and the contravariant tensor induced by 𝑔 on the surface 𝑆. In [2-3] the above
equation was presented for the case of gas-dynamics, although without giving it the geometrical
meaning. In one of my conversations with N.N. Yanenko when discussing above equation, he said
that he was aware that there must be some sort of geometry behind, especially the mean curvature
of the surface. To acknowledge the contribution of Yanenko as well as M. Burnat [6] in the
development of the theory of double and multiple waves solutions we can speak of Burnat-Yanenko
equation.
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The Lie group transformations have a major role in the applied science which is considered to
obtain the fully nonlinear Monge-Ampre equation [1, 2]. For the reduced Monge-Ampre equation,
Hermite approximation method and classical theory of differential equations are considered to
obtain the analytical solutions. The obtained results have a major role in the literature so that
the considered equation is seen in a large scale of applications.
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Nikolai Nikolaevich Yanenko left a big creative heritage. The study of his publications stim-
ulates the work in the directions he discovered. One of them is the study of double waves in the
gas dynamics (Yu.Ya. Pogodin, V.A. Suchkov and N.N. Yanenko, 1958). The paper discusses
the double waves equation in the case of a two-dimensional gas movement with a large indicator
of polytropes 𝛾 and a decomposition of its solution with respect to inverse degrees of 𝛾 is con-
structed. Note that in the Tates well-known equation of the state, used to describe the barotropic
water movements, 𝛾 = 7.15. N.N. Yanenko (1955) opened the class of weakly nonlinear systems
of hyperbolic type equations. There are no strong discontinuities in their solutions although weak
ones are allowed. It turned out that such a weakly nonlinear system occurs when describing the
plane movement of the viscoelastic incompressible Maxwell medium near the critical point (N.P.
Moshkin, V.V. Pukhnachev and Yu.D. Bozhkov, 2019). The paper discusses the axisymmetric
version of this problem.
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In many works and reports of academician N.N. Yanenko, the problem statements are pre-
sented; they require computing the accuracy of numerical results that depend on the perturbations
introduced. Such problems are equivalent to the problems of stability research. Problems of motion
stability over a finite time interval are of considerable interest. This is also due to the fact that
most of the methods for studying stability determine stability as 𝑡→ ∞. Practical stability over a
finite time interval means that the solutions are uniformly bounded with respect to the set of initial
values and the totality of disturbing influences. The report describes new results of using symbolic
formulas of solutions sets for investigating practical stability. To estimate the boundaries of sets of
solutions, we investigate and then use the property of injectivity (one-to-one) of solutions to ODEs.
For linear systems of ODEs, the one-to-one property is a consequence of the Cauchy formula for
the general solution. For nonlinear ODE systems that have unique solutions, the boundaries of
the initial data domains pass into the boundaries of the solution domains at each specific moment.
The class of such nonlinear ODE systems consists of systems with uniformly bounded solutions [1]
(Lagrange stable).

The sets of solutions to ODE systems with initial data belonging to the regions of initial data
have complex boundaries (boundary surfaces in a space of dimension less than or equal to 𝑛).
For the boundaries (boundary surfaces) it is impossible to choose formulas of functions whose
graphs coincide with the boundaries of the solution sets. As a result, it is possible to choose
one of the algorithms – either describe the values of the boundary surfaces in a set of discrete
points (on a grid), or compute the estimates of the maximum values of solutions in the directions
of the coordinate axes, or compute the maximum values of solutions in any chosen direction.
Preliminarily, it is useful to construct a regularization of estimates for the boundaries of the
solution sets, passing to the linear approximation of the original system Regularization means
obtaining information about a set of exact solutions. This regularization describes the values of
compression/expansion in given directions, displacement along the time axis, and rotation through
some angle of the set of solutions. In a sense, we can talk about estimating the deformation of the
set of solutions in the linear approximation.

The use of symbolic formulas for solutions makes it possible to efficiently estimate the sets of
solutions of ordinary differential equations with perturbations over a finite time interval. Examples
of solving practical problems are given, confirming this efficiency.

This work was carried out within the framework of the state assignment of the Federal Research
Center of the KSC SB RAS, project No. 0287-2021-0002
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The system of equations for the one-dimensional motion of cold plasma in the nonrelativistic
case, as shown in [1], can be reduced to a hyperbolic system of two equations for the velocity 𝑣(𝑡, 𝑥)
and the electric field 𝐸(𝑡, 𝑥), together with one equation for the density 𝑛(𝑡, 𝑥) > 0:

𝑣𝑡 + 𝑣𝑣𝑥 = −𝐸, 𝐸𝑡 + 𝑣𝐸𝑥 = 𝑣, 𝑛 = 1 − 𝐸𝑥, 𝑡 ∈ R+, 𝑥 ∈ R. (1)

Since the derivatives of a smooth solution can go to infinity in a finite time [2], it makes sense to
consider piecewise smooth initial data, the simplest example of which is the Riemann data

(𝑣,𝐸, 𝑛)|𝑡=0 = (𝑣0− + [𝑣]0Θ(𝑥), 𝐸0
− + [𝐸]0Θ(𝑥), 1 + [𝐸]0𝛿(𝑥)), [𝐸]0 ≤ 0, (2)

where Θ(𝑥) is the Heaviside function, constants (𝑣0∓, 𝐸
0
∓) are values to the left(right) of the jump,

([𝑣]0, [𝐸]0) are magnitudes of the jumps.
Since the initial data contain the delta function, the Riemann problem is singular and the

Rankine-Hugoniot conditions cannot be written in the traditional form [3].
To construct the discontinuity, we write the system (1) in the divergent form

𝑛𝑡 + (𝑣𝑛)𝑥 = 0,

(︂
𝑛𝑣2

2
+
𝐸2

2

)︂
𝑡

+

(︂
𝑛𝑣3

2

)︂
𝑥

= 0, (3)

corresponding to the laws of conservation of mass and total energy (e,g., [4]).
The Riemann problem (3), (2) is completely non-standard and demonstrates new phenomena

both in the rarefaction wave and in the singular shock wave.
The difficulty in constructing a solution is associated, in particular, with the fact that system (1)

does not have a constant stationary state. Further, the system (1) for (𝑣,𝐸) is hyperbolic, but not
strictly hyperbolic; it has a subclass of solutions distinguished by the condition 𝑣2 +𝐸2 = 𝐶2 with
the given constant 𝐶. This leads to the non-uniqueness of the rarefaction wave for the Riemann
problem; therefore, the question arises about the principles on which the ”correct” solution can be
distinguished.

When constructing a singular shock wave, a homogeneous conservative system of two equations
(3) is used, but it includes three components of the solution, two of which are linked. Such a formu-
lation has not been encountered before. The shock wave satisfies the so-called ”supercompression”
conditions, which are traditionally used to distinguish admissible singular shock waves [3].
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In this short talk, we shall focus on illustrating methods in potential theory and fixed point
theory for the existence of positive continuous solutions to sublinear elliptic problems of the form{︃

−∆𝑢 = 𝜎𝑢𝑞 + 𝜇 in Ω,

𝑢 = 𝑓 on 𝜕∞Ω.

Here 𝜎 and 𝜇 are positive Radon measures on an arbitrary domain Ω ⊂ R𝑛 (𝑛 ≥ 2), and 𝑓 is a
positive continuous function on the boundary 𝜕∞Ω. If time permits, we may further discuss the
uniqueness result and two-sided pointwise estimates of Brezis-Kamin type for such solutions. This
talk is based on joint work with Kentaro Hirata (Hiroshima University).



64 Sergyeyev A.

Integrable Systems in Four Independent Variables
from Contact Geometry

A. Sergyeyev

Mathematical Institute, Silesian University in Opava, Opava, Czech Republic;
artur.sergyeyev@math.slu.cz

According to Einstein’s general relativity we live in a four-dimensional spacetime, and for this
reason it is a longstanding challenge in mathematical physics to understand just how numerous and
how diverse nonlinear partial differential systems in four independent variables that can be exactly
solved in some sense can be and, in particular, whether an effective construction producing such sys-
tems is available, given that the number of previously known examples of the sort is rather limited.

In this talk we present such a construction and employ it to produce two new infinite families
of sought-for examples, thus showing inter alia that there is significantly more of them than it
appeared before.

Namely, we introduce a novel kind of Lax pairs related to contact geometry which yields a large
new class of nonlinear partial differential systems in four independent variables (4D) integrable in
the sense of soliton theory. The class in question contains inter alia two new infinite families of
4D integrable systems and a first known example of an integrable 4D system with a nonisospectral
Lax pair which is algebraic rather than rational in the spectral parameter.

In particular, the following assertion holds:

Theorem. Lax pairs 𝜒𝑦 = 𝑋𝑓 (𝜒), 𝜒𝑡 = 𝑋𝑔(𝜒), where 𝑋ℎ = ℎ𝑝𝜕𝑥 + (𝑝ℎ𝑧 −ℎ𝑥)𝜕𝑝 + (ℎ− 𝑝ℎ𝑝)𝜕𝑧
and 𝜒 = 𝜒(𝑥, 𝑦, 𝑧, 𝑡, 𝑝), yield two infinite series of new 4D integrable systems for 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡),
labelled by natural numbers 𝑚 and 𝑛, for 𝑓 and 𝑔 given by the following formulas:

1. 𝑓 = 𝑝𝑛+1 +
𝑛∑︀

𝑖=0

𝑢𝑖𝑝
𝑖, 𝑔 = 𝑝𝑚+1 +

𝑚

𝑛
𝑢𝑛𝑝

𝑚 +
𝑚−1∑︀
𝑗=0

𝑣𝑗𝑝
𝑗 with 𝑢 = (𝑢0, . . . , 𝑢𝑛, 𝑣0, . . . , 𝑣𝑚−1)T;

2. 𝑓 =
𝑚∑︀
𝑖=1

𝑎𝑖
(𝑝− 𝑢𝑖)

, 𝑔 =

𝑛∑︁
𝑗=1

𝑏𝑗
(𝑝− 𝑣𝑗)

with 𝑢 = (𝑎1, . . . , 𝑎𝑚, 𝑢1, . . . , 𝑢𝑚, 𝑏1, . . . , 𝑏𝑛, 𝑣1, . . . , 𝑣𝑛)T.
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Cerebral arteriovenous malformation (AVM) is a congenital brain vessels pathology, in which
the arterial and venous blood channels are connected by tangles of abnormal blood vessels. The
most preferred method of treating these pathologies is embolization - intravascular filling of the
AVM vessel bundle with a special thickening composition (embolic agent) in order to block blood
flow through them. This method of surgical intervention is widely used, but still in some cases it
is accompanied by intraoperative rupture of the malformation vessels. In this work, this process
is numerically modeled and an optimization algorithm for embolization is built.

To describe the embolization process, a combined model is proposed, in which, along with
the flow of blood and embolic agent in the AVM, the redistribution of blood to the surrounding
healthy vessels is taken into account. The embolization process is modeled as a two-phase filtration
process of immiscible incompressible fluids, where the displaced phase is blood, and the displacing
phase is the embolic agent; for this, an equation of the Buckley-Leverett type is used, which is
solved numerically using a monotonic modification of the CABARET scheme [1]. The blood flow
entering the AVM changes during the operation due to the redistribution of blood to adjacent
healthy vessels; this effect is taken into account in the model by introducing additional algebraic
and integral relations.

When studying the problem of optimal embolization, the geometric and filtration AVM char-
acteristics were used, built on the basis of clinical data obtained during the monitoring of hemody-
namic parameters during neurosurgical operations at the National Medical Research Center named
after academic E.N. Meshalkin [2].

The main goal of this work is to find the optimal scenario for arteriovenous malformation
embolization from the safety and effectiveness of the procedure point of view. The objective
functional and the constraints arising in such an optimal control problem are selected in accordance
with medical indications. The control is a time-dependent function that determines the volumetric
flow rate of the embolic agent at the AVM input. The problem of embolization optimal control is
formulated and solved for a special law of embolic agent supply.

The work was supported by the Russian Science Foundation (grant number 20-71-10034).
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The gas dynamics equations with the state equation of a general form have the following sym-
metries: space translations, time translation, rotations, Galilean translations, uniform dilatation.
In this investigation the state equation is a pressure equal to the sum of two functions - the first
function depends on density, and the second function depends on entropy [1]. Such system of equa-
tions has additional symmetry — pressure translation. The system admits a 12-dimensional Lie
algebra. An optimal system of dissimilar subalgebras of the 12-dimensional Lie algebra was con-
structed in [2]. Invariant submodels of rank 3, 2, and 1 are calculated for 1-, 2-, and 3-dimensional
subalgebras. Exact solutions were found for some submodels [3, 4]. The motion of particles and
volumes according to some exact solutions is considered.

The author was supported by the Russian Foundation for Basic Research (project no. 18-29-
10071) and partially from the Federal Budget by the State Target (project no. 0246-2019-0052).
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We consider the problem

𝐴(𝑡)𝑥
′′
(𝑡) +𝐵(𝑡)𝑥

′
(𝑡) + 𝐶(𝑡)𝑥(𝑡) = 𝑓(𝑡), 𝑡 ∈ [0, 1], (1)

𝑥(0) = 𝑥0, 𝑥
′
(𝑡)|𝑡=0 = 𝑥

′

0, (2)

where 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡) are (𝑛×𝑛)-matrices, 𝑓(𝑡) and 𝑥(𝑡) are the given and unknown 𝑛-dimensional
vector functions 𝑥0, 𝑥

′

0 ∈ 𝑅𝑛. Here
𝑑𝑒𝑡𝐴(𝑡) ≡ 0. (3)

System (1) with condition (3) is called as second-order differential-algebraic equations (DAEs2).
It is assumed that the initial conditions (2) are consistent, that is, the problem under consideration
has a solution. By the solution we mean any differentiable vector function that turns (1) into an
identity and satisfies conditions (2).

The main approach to solving the second-order DAEs is that the original problem is rewritten as
the first-order DAE, using the new vector-function 𝑦(𝑡) = (𝑥⊤

′
(𝑡), 𝑥⊤(𝑡))⊤[1]. This transformation

has drawbacks, since it doubles the dimension of the obtained problem.
We propose methods based on the idea from [2] for direct numerical solution of problem under

consideration.

The reported study was funded by RFBR and VAST according to the research project 20-51-
54003.
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Essential progress in the investigation of flows of an incompressible fluid is usually achieved
with the help of scalar functions, e.g., the velocity potential or stream-function. Indeed, flow
description by means of one scalar function is much simpler than the description based on the
three-dimensional vector field. Many interesting and physically important problems were solved in
this way. However, the traditional usage of the velocity potential or stream-function is restricted
by certain assumptions – in the former case, the flow is assumed to be ideal and potential, whereas
in the latter case the flow may be viscous, but consisting of two components only with only one
component of the vorticity. Such restrictions essentially bound a range of applicability of the
traditional approaches.

Here we propose another approach, also based on the introduction of only one scalar function
dubbed the quasi-potential. However, it is shown that with the quasi-potential a wide new class
of non-stationary three-dimensional flows can be described. This class of flows includes both the
potential and vortex flows as the particular cases. In the latter case, the corresponding vorticity
field may consist of two components, in general. Characteristic features of such flows are described
in detail. Particular examples of flows are presented in the explicit form. We also derive the
Bernoulli integral for this class of flows and compare it against the known Bernoulli integrals for
the potential flows or 2D stationary vortical flows of an inviscid fluid. We show that the Bernoulli
integral for this class of fluid motion possesses unusual features: it is valid for the vortical non-
stationary motions of a viscous incompressible fluid. A further non-trivial generalisation can be
done for the flows in curvilinear coordinate frames, for example, in the cylindrical or spherical
coordinate frame.

The author gratefully acknowledges financial support by the State task program in the sphere
of scientific activity of the Ministry of Science and Higher Education of the Russian Federation
(project No. FSWE-2020-0007) and the grant of President of the Russian Federation for the state
support of Leading Scientific Schools of the Russian Federation (grant No. NSH-2485.2020.5).
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In this paper, we consider the differentially-invariant solutions of the equations Navier-Stokes
with respect to the four-dimensional group generated by operators

𝜕𝑥, 𝜕𝑦, 𝑡𝜕𝑥 + 𝜕𝑢, 𝑡𝜕𝑦 + 𝜕𝑣. (1)

Partially invariant solutions of defect 2 and rank 2 with respect to this group for the Navier-
Stokes equations are described in [2] and for the equations gas dynamics in the work [3].

Differential-invariant solutions are a generalization of invariant and partially invariant solutions
[1]. Each differentially-invariant solution is characterized by the sequence dimensions of orbits
𝑑0, 𝑑1, . . . of this solution in extended spaces [4], [5], where 𝑑𝑗 is the dimension of the orbit of the
solution in the 𝑗-extended space.

For the algebra (1), the following sequence variants are possible: (6,6), (6,7,7), (6,7,8,8), (7,7),
(7,8,8), (8,8). The first three correspond to partially invariant solutions of defect 2, following two
partially invariant solutions of defect 3. In this paper, we consider in detail variants (6,6) and
(7,7).
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The framework of Baikov-Gazizov-Ibragimov approximate symmetries has proven useful for
many examples where a small perturbation of an ordinary differential equation (ODE) destroys its
local symmetry group [1, 2]. For second and higher-order ODEs: some original symmetries of the
unperturbed model

𝑦(𝑛) = 𝑓0(𝑥, 𝑦, 𝑦′, ..., 𝑦(𝑛−1)), 𝑛 ≥ 2 (1)

can be unstable, that is, they are not inherited as nontrivial approximate point symmetries of a
perturbed ODE

𝑦(𝑛) = 𝑓0(𝑥, 𝑦, 𝑦′, ..., 𝑦(𝑛−1)) + 𝜖𝑓1(𝑥, 𝑦, 𝑦′, ..., 𝑦(𝑛−1)) + 𝑜(𝜖). (2)

We show that the unstable point symmetries of the unperturbed ODE (1) correspond to higher-
order approximate symmetries of the perturbed ODE (2), and can be systematically computed:

Theorem 1. For each exact point or local symmetry of an unperturbed ODE (1), there is
an approximate symmetry of the perturbed ODE (2), with the approximate symmetry component
being of order at most 𝑛− 1.

As an application, we consider a fourth-order Boussinesq reduction ODE

𝑦(4) + 𝑦′′ − 𝜖
(︀
2𝑦𝑦′′ + 2𝑦′2

)︀
= 0. (3)
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We study linear stability by Lyapunov of the previously obtained stationary flow of viscoelastic
incompressible polymeric fluid in an infinite plane channel with perforated walls. To describe the
movement of the polymeric medium we choose rheological Pokrovski-Vinogradov model, which is
good enough in catching qualitative properties of flows in observed experiments [1].

It turns out that there are solutions in an exponential form with growing exponent in pertur-
bation classes of the base solution periodic with respect to the spatial variable.

This work continues the study of linear stability of stationary of flows for different solutions of
the Pokrovski-Vinogradov model and its generalizations to the nonisothermic case and to the case
when medium is influenced by the uniform external magnetic field and model taking into account
nonisothermic electroconvection of weakly isolating polymeric fluid [2, 3, 4, 5, 6, 7, 8, 9].

The study was carried out within the framework of the state contract of the Sobolev Institute
of Mathematics (project no. 0314-2019-0013) and additionally supported by the RFBR, project
number 19-01-00261a.
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A. Myshkis was the first to mention differential equations of the form 𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑟(𝑡)));
where 𝑟(𝑡) is a discontinuous argument; for example, 𝑟(𝑡) = [𝑡], the integer part function.
M.U. Akhmet in order to generalize the situation presented before, introduced the equations of the
form 𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝛾(𝑡))), where 𝛾(𝑡) is a piecewise constant argument of generalized type. This
is, given (𝑡𝑘)𝑘∈Z and (𝜁𝑘)𝑘∈Z such that 𝑡𝑘 < 𝑡𝑘+1 ,∀𝑘 ∈ Z with lim

𝑘→±∞
𝑡𝑘 = ±∞, 𝑡𝑘 ≤ 𝜁𝑘 ≤ 𝑡𝑘+1

and 𝛾(𝑡) = 𝜁𝑘 if 𝑡 ∈ 𝐼𝑘 = [𝑡𝑘, 𝑡𝑘+1) . These equations were called Differential Equations with
Piecewise Constant Argument of Generalized Type (DEPCAG). It is very remarkable that, despite
the discontinuous deviating argument, they have continuous solutions. At the end of the intervals
𝐼𝑘 = [𝑡𝑘, 𝑡𝑘+1) , they define a difference equation. This important fact gives to these equations the
name of hybrids. Hence, it is necessary to take into account discrete and continuous dynamics.
If in the DEPCAG case, continuity at the endpoints of the intervals 𝐼𝑘 = [𝑡𝑘, 𝑡𝑘+1) is not required,
a new type of equations is defined. They are called Impulsive Differential Equations with Piecewise
Constant Argument of Generalized Type (IDEPCAG)

𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝛾(𝑡))), 𝑡 ̸= 𝑡𝑘

∆𝑥(𝑡𝑘) = 𝑄𝑘(𝑥(𝑡−𝑘 )), 𝑡 = 𝑡𝑘, (1)

where ∆𝑥(𝑡𝑘) = 𝑥(𝑡𝑘)− 𝑥(𝑡−𝑘 ), 𝑥(𝑡−𝑘 ) = lim𝑡→𝑡𝑘
𝑡<𝑡𝑘

𝑥(𝑡) exists ∀𝑡𝑘 with 𝑘 ∈ N, and 𝑥(𝑡𝑘) is defined by

𝑥 (𝑡𝑘) = 𝑥(𝑡−𝑘 ) +𝑄𝑘

(︀
𝑥(𝑡−𝑘 )

)︀
.

Consider the differential equation with deviated argument

𝑥′(𝑡) = 𝑓 ([𝑡/ℎ]ℎ, 𝑥 ([𝑡/ℎ]ℎ)) , (2)

where 𝑥0 = 𝑥(𝑘ℎ), with 𝑘 ∈ Z, ℎ ∈]0,∞[ fixed and [·] denotes the integer part function. We
note that [𝑡/ℎ]ℎ = 𝑘ℎ if 𝑡 ∈ 𝐼𝑘 = [𝑘ℎ, (𝑘 + 1)ℎ). This function is a case of a piecewise constant
function and it has jump discontinuities at the points Zℎ = {𝑘ℎ : 𝑘 ∈ Z}. Then, if we set
𝑡𝑘 = 𝑘ℎ, integrating (2) in 𝐼𝑘 = [𝑡𝑘, 𝑡𝑘+1) and assuming continuity at 𝑡 = 𝑡𝑘+1 we have 𝑥 (𝑡𝑘+1) =
𝑥
(︀
𝑡𝑘) + ℎ𝑓

(︀
𝑡𝑘, 𝑥 (𝑡𝑘)

)︀
. So, (2) can be seen as an approximating for 𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), recovering

the Euler’s scheme. Using the step function 𝛾(𝑡) = [𝑡/ℎ]ℎ and some stability hypothesis, we will
approximate the solution of the following impulsive system

𝑦′𝑖(𝑡) = −𝑎𝑖(𝑡)𝑦𝑖(𝑡) +

𝑚∑︁
𝑗=1

𝑏𝑖𝑗(𝑡)𝑓𝑗(𝑦𝑗(𝑡)) + 𝑐𝑖(𝑡), 𝑡 ̸= 𝑡𝑘

∆𝑦𝑖(𝑡𝑘) = −𝑞𝑖,𝑘𝑦𝑖(𝑡−𝑘 ) + 𝑒𝑖,𝑘 + 𝐼𝑖,𝑘(𝑦(𝑡−𝑘 )), 𝑡 = 𝑡𝑘,

by the impulsive system with piecewise constant argument

𝑧′𝑖(𝑡) = −𝑎𝑖(𝑡)𝑧𝑖(𝑡) +

𝑚∑︁
𝑗=1

𝑏𝑖𝑗(𝑡)𝑓𝑗(𝑧𝑗(𝛾(𝑡))) + 𝑐𝑖(𝑡), 𝑡 ̸= 𝛾(𝑡𝑘)

∆𝑧𝑖(𝛾(𝑡𝑘)) = −𝑞𝑖,𝑘𝑧𝑖(𝛾(𝑡𝑘)−) + 𝑒𝑖,𝑘 + 𝐼𝑖,𝑘(𝑧(𝛾(𝑡𝑘)−)) 𝑡 = 𝛾(𝑡𝑘).

The approximation will be uniform in [𝜏,∞). I.e sup
𝑡∈[𝜏,∞)

|𝑦(𝑡) − 𝑧(𝑡)| → 0 as ℎ → 0, with error

of approximation sup
𝑡∈[𝜏,∞)

|𝑦𝑖(𝑡) − 𝑧𝑖(𝑡)| ≤ exp {−𝜎2(𝑡− 𝜏)}𝐾(ℎ, 𝜎, 𝜏), 𝜎2 > 0.

This is a joint work with M. Pinto (U. de Chile) and A. Paliathanasis (Durban U. of Technology).
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We describe a new result in the classical theory of univariate discrete orthogonal polynomials:
extremely fast decay of their values near the interval boundary for polynomials of sufficiently high
degree. This effect dramatically differs from the behavior of much more popular in mathematical
curricula continuous orthogonal polynomials.

The practical importance of this new result for the theory of discrete polynomial filters (widely
applied for detection of anomalies of time series of measurements) is demonstrated on the prac-
tical example of detection of outliers and small discontinuities in the publicly available GPS and
GLONASS trajectories.

Discrete polynomial filters, on one hand, can detect very small anomalies in sparse time series
(with amplitude of order 10−11 relative to the typical values of the time series). On the other hand
our general result limits sensitivity of polynomial filters near the boundary of the time series.

The main problem in practical applications of the discussed method is numerical instability
of construction of the discrete orthogonal polynomials of high degree. We present a simple and
robust way of numerical computation of discrete orthogonal polynomials (Hahn polynomials).

The authors gratefully acknowledge financial support by Krasnoyarsk Mathematical Center
and the Ministry of Science and Higher Education of the Russian Federation in the framework of
the establishment and development of regional Centers for Mathematics Research and Education
(Agreement No. 075-02-2021-1388).

REFERENCES

1. Tsarev, S. P. and Kytmanov A. A., Discrete orthogonal polynomials as a tool for detection of small
anomalies of time series: a case study of GPS final orbits, arXiv preprint arXiv:2004.00414 (2020).
https://arxiv.org/abs/2004.00414



74 Ulyanov O. N., Rubina L. I.

On Some Methods of Reducing Nonlinear Partial Differential
Equations to Systems of Ordinary Differential Equations

O. N. Ulyanov, L. I. Rubina

Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian
Academy of Sciences, Ekaterinburg, Russia; uon@imm.uran.ru

The study of a mathematical model specified in the form of a nonlinear partial differential
equation or a system of nonlinear partial differential equations can be carried out in different ways
and methods. Among them, of course, we should mention the method of differential constraints
[1], methods of group analysis of differential equations [2], the Clarkson-Kruskal method [3]. As is
known, there are no general methods for analyzing such models. When solving practical problems,
one has to develop various original techniques. The report discusses three ways to reduce nonlinear
partial differential equations to systems of ordinary differential equations (systems of ODEs). These
methods are based on a system of equations of characteristics for a certain first-order partial
differential equation. Let’s call this equation as basic equation.

In the first method, the ”basic equation is set. On the left-hand side, it contains only the
independent variables of the original equation and the first derivatives of the solution to the
original equation. On the right-hand side of the basic equation, an arbitrary function is specified
that depends only on the solution of the original equation. An arbitrary function allows one to
construct such a system of ODEs — a system of equations for the characteristics of a given basic
equation, for which the original equation is the first integral.

In the second method, the part of the original equation containing only first-order derivatives
is selected as the basic equation, if such a part is present in the original equation.

In the third method, the first-order equation is selected as the basic equation, which must be
satisfied by the function that defines the level surface of the solution to the original equation.

When one or another method is selected and the corresponding basic equation is selected,
a system of characteristic equations is written out for the ”basic” first-order partial differential
equation. Note that it describes the change in independent variables, the solution to this equation,
and the first derivatives of the solution to the basic equation along the characteristics. The system
is supplemented by equations describing the change along the characteristics of derivatives of order
higher than the first and first integrals that ensure the reduction of the original equation to a system
of ODEs. In the first and second methods, it is assumed that the independent variable in the system
of equations of characteristics is the function — the solution to the original equation. In the case
of the third method, the solution of the system of equations of characteristics is considered as a
transition to new coordinates, and one of the new coordinates is the level surface of the solution.

The authors notes the experience of using the considered methods for a number of equations,
in particular, for some equations of nonlinear acoustics [4], the convection-diffusion equation [5],
the potential double wave equation in the hodograph plane [6], et al. In the report, these and some
generalizing approaches are presented for the equation for the velocity potential in the axisymmetric
case, the equation for the axisymmetric stationary laminar hydrodynamic boundary layer, the one-
dimensional non-stationary filtration equation and the homogeneous Monge-Ampere equation.
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An admissible transformation is a triple consisting of two fixed equations from a class and
a transformation that links these equations. The set of admissible transformations considered with
the standard operation of composition of transformations is also called the equivalence groupoid. It
is important to study transformation properties of classes of differential equations, i.e. to describe
explicitly their equivalence groupoids. Indeed, if two differential equations are connected by a non-
degenerate point transformation, then associated objects like exact solutions, local conservation
laws, and different kinds of symmetries of these equations are also related by this transformation.
Such equations are called equivalent (or similar in terms of [1]). The knowledge of an exact solution
for one of two equivalent equations allows one to construct the corresponding exact solution for the
other equation using a point transformation connecting them. At the same time, nondegenerate
point transformations appear to be a useful tool not only for finding exact solutions but also for
exhaustive solution of group classification problems and study of integrability (see, e.g., [2] and
references therein).

By Ovsiannikov [1], the equivalence group of a class consists of the nondegenerate point trans-
formations of the independent and dependent variables and of the arbitrary class elements that
map any equation of this class to an equation from the same class, where the transformation
components for the independent and the dependent variables are projectible on the space of these
variables. After appearance of equivalence groups of other kinds the ones introduced by Ovsian-
nikov are called the usual equivalence groups. If transformation components for independent or
dependent variables involve arbitrary elements, then the corresponding equivalence group is called
the generalized equivalence group [3]. If target arbitrary elements appear to depend on source ones
in a nonlocal way, then the corresponding equivalence group is called extended, whereas extended
generalized equivalence groups possess both the aforementioned properties [4].

If any admissible transformation in a given class is induced by a transformation from its equiv-
alence group (usual / generalized / extended / extended generalized), then this class is called
normalized in the corresponding sense.

In this talk using illustrative examples we discuss how the normalization property is used in
group analysis of differential equations, how it affects choosing methods of group classification to be
applied and appropriate gaugings of arbitrary elements. These examples include classes of variable
coefficient Kawahara equations and of (1+1)-dimensional nonlinear wave and elliptic equations.

The author gratefully acknowledges financial support by NAS of Ukraine within the project
0121U110543.
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The similarity transformation 𝑇𝑔 : 𝑎 −→ 𝑔𝑎𝑔−1 splits the set of square 𝑛 × 𝑛 matrices into
equivalence classes. The Jordan form Λ𝑎 of a matrix 𝑎 is the canonical representative of each class
[1]. The algebraic invariants of a matrix 𝑎 are invariants of the similarity transformation 𝑇𝑔. They
can be expressed in various ways, in particular, as the traces of the powers of 𝑎: 𝑗1 = 𝑡𝑟𝑎, 𝑗2 =
𝑡𝑟𝑎2, ..., 𝑗𝑛 = 𝑡𝑟𝑎𝑛. An extensive literature is devoted to constructing bases for sets of matrices
𝑎, 𝑏, ... and their properties. Let a matrix 𝑎 depend smoothly on a parameter 𝑡 ∈ 𝐼 ⊆ R, so that

the derivatives 𝑎1 = 𝑑𝑎
𝑑𝑡 , 𝑎2 = 𝑑2𝑎

𝑑𝑡2 , ... are defined as matrices formed from the derivatives of the
entries of the matrix. The eigenvalues and algebraic invariants of the matrices 𝑎1, 𝑎2, ... are no
longer expressed by simple formulas in terms of the algebraic invariants of the matrix 𝑎, except for

the relation 𝑑𝑘

𝑑𝑡𝑘
𝑡𝑟𝑎 = 𝑡𝑟 𝑑

𝑘𝑎
𝑑𝑡𝑘

.
The question about the relation between the eigenvalues and algebraic invariants of the original

matrix 𝑎 and its derivatives 𝑑𝑎
𝑑𝑡 ,

𝑑2𝑎
𝑑𝑡2 ... is of interest in itself and finds applications in continuum

mechanics [1], in gas dynamics [2]. It is formulated and solved on the basis of the theory of
differential invariants [3].

This paper provides formulas for calculating the algebraic invariants of derivatives of any order
of the original matrix and gives the proof of their correctness with respect to the choice of the sim-
ilarity matrix that reduces the original matrix 𝑎 to its Jordan form Λ𝑎. We construct an invariant
differentiation operator for the Lie group of continuous transformations {𝑇𝑔} implementing simi-
larity. For 2 × 2 we discover a connection between the derivatives of a matrix and the differential
analogue of the Clifford algebra [4].
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Gravitation from the Least Action Principle and the Models of the

Universe
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In classical books (see [1]–[4]), equations for electromagnetic and gravitation fields are proposed
without derivation of the right–hand sides. Here we give the derivation of the right-hand sides of the
Maxwell and Einstein equations in the framework of the Vlasov–Maxwell–Einstein equations from
the classical, but slightly more general principle of least action [5]–[11]. The resulting derivation
of the Vlasov–type equations gives the Vlasov–Einstein equations different from those proposed
earlier [12]–[15]. A method is proposed for the transition from kinetic equations to hydrodynamic
consequences [5]–[8], as it was done earlier by A. A. Vlasov himself [4]. In the case of Hamiltonian
mechanics, the transition to the Hamilton–Jacobi equation from the hydrodynamic consequences
of the Liouville equation is possible, as was done already in quantum mechanics [16]. Thus, in
the nonrelativistic case, we obtain the Milne–McCree solutions, a nonrelativistic analogue of the
Friedmann–type solutions of the nonstationary evolution of the Universe.
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Distinguished Limits and Drifts: between Nonuniqueness and
Universality
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This paper deals with a version of the two-timing method which describes various ‘slow’ effects
caused by externally imposed ‘fast’ oscillations. Such small oscillations are often called vibrations
and the research area can be referred as vibrodynamics. The governing equations represent a generic
system of first-order ODEs containing a prescribed oscillating velocity 𝑢, given in a general form.
Two basic small parameters stand in for the inverse frequency and the ratio of two time-scales; they
appear in equations as regular perturbations. The proper connections between these parameters
yield the distinguished limits, leading to the existence of closed systems of asymptotic equations.
The aim of this paper is twofold: (i) to clarify (or to demystify) the choices of a slow variable, and
(ii) to give a coherent exposition which is accessible for practical users in applied mathematics,
sciences and engineering. We focus our study on the usually hidden aspects of the two-timing
method such as the uniqueness or multiplicity of distinguished limits and universal structures of
averaged equations. The main result is the demonstration that there are two (and only two)
different distinguished limits. The explicit instruction for practically solving ODEs for different
classes of 𝑢 is presented. The key roles of drift velocity and the qualitatively new appearance of
the linearized equations are discussed. To illustrate the broadness of our approach, two examples
from mathematical biology are shown.

Key words: applied mathematics, differential equations, asymptotic methods, perturbation
methods, two-timing method, vibrodynamics, distinguished limits, averaged equations, slow-time
variable, universal structures, drift velocity.
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Conformal Invariance of the 1-Point Statistics of the Zero-Isolines of
2d Scalar Fields in Inverse Turbulent Cascades
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This study concerns conformal invariance of certain statistics in a class of hydrodynamic models
for scalar fields in 2𝑑. As it was discussed by Bernard et al. [1], there exist numerical evidence
that the zero-vorticity isolines x(𝑙, 𝑡) for the 2𝑑 Euler equation with an external force and a uni-
form friction belong to the class of conformally invariant random curves. Based on this evidence,
the conformal invariance was formally proven in Ref. [2] by a Lie group analysis for the 1-point
probability density function governed by the inviscid Lundgren-Monin-Novikov equations for 2𝑑
vorticity fields subject to the zero-vorticity constraint 𝜔 = 0. Therein, no external forcing was
considered.

In this work we consider the first equation from the Lundgren-Monin-Novikov chain for 2𝑑
scalar fields 𝜑 under Gaussian white-in-time forcing and large-scale friction. With this, the flow
can be kept in a statistically steady state and the analysis is performed for the stationary Lundgren-
Monin-Novikov equation. We show that the conformal invariance can be retained in the presence of
large-scale friction and forcing under the restriction 𝜑 = 0, however, it is broken if the viscous term
is included into the equation. Specifically, for the inviscid case we prove the conformal invariance
of the 1-point statistics of the zero-isolines x(𝑙, 𝑡) of a scalar field, i.e. the conformal invariance of
the probability 𝑓1(x(𝑙), 𝜑)𝑑𝜑 that a random curve x(𝑙, 𝑡) passes through the point x with 𝜑 = 0 for
𝑙 = 𝑙1.

We show an example, where the proposed transformations represent a change from probabil-
ity density functions describing homogeneous fields to the ones that describe non-homogeneous
turbulence. Possible implications of this result are discussed.
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This paper uses the Lagrangian action formulation of the Chew-Goldberger-Low (CGL) equa-
tions of plasma physics, in which the plasma pressure is anisotropic, with components 𝑝‖ and 𝑝⊥
parallel and perpendicular to the magnetic field B, where 𝑝‖ and 𝑝⊥ satisfy the double adiabatic
equations which are related to the first and second adiabatic invariants ([1],[2], [4]). Euler-Poincaré
and Lagrangian formulations of the equations are developed, which depend on the internal energy
per unit mass of the plasma. Noether’s theorem is used in conjunction with the Lagrangian
variational principle to derive conservation laws for the equations, using the approach ([3],[5]).
Conservation laws corresponding to the 10 parameter Galileian group are obtained. These symme-
tries give rise to the energy (time translation invariance), momentum (space translations), center of
mass conservation law (Galileian boosts) and the angular momentum conservation laws (rotational
symmetries about an axis of rotation). A non-local cross helicity conservation law associated with
a fluid relabelling symmetry is also obtained. Hamiltonian Poisson bracket formulations of the
equations are discussed.
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stimulating discussions with Darryl Holm, Stephen Anco, Sergey Meleshko, Peter Hunana and
Gary Zank.
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